Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Ni based catalysts supported over γ-Al2O3, previously modified with increasing contents of Mg(II), were employed for the steam reforming of glycerol. The aim of the present study is to analyze the effect of the content of Mg(II), as a promoter of Ni/γ-Al 2O3 catalysts, on the textural and structural characteristics of the solid; as well as on the catalytic activity and selectivity to H2 in the steam reforming of glycerol. Fresh samples were characterized by PXRD, BET surface area, H2 chemisorption, TPR, and CO2-TPD. Used catalysts were analyzed by TPO, in order to study the effect of Mg(II) on carbon gasification. Both fresh and used samples were examined by SEM. The content of Mg(II) has both an effect on the catalytic performance and on the structural and textural characteristics of the catalysts. The incorporation of Mg(II) results in the formation of Mg1-xAl 2O4-x spinel phase. The differences in catalytic properties due to the increasing content of Mg(II) have effect simultaneously on the Ni crystallite size, on the acidic-basic character and on the interactions between NiO and support. For the catalysts promoted with Mg(II), the best activity for the steam reforming of glycerol was achieved with Ni(10)Mg(3)Al catalyst while the Ni(10)Mg(15)Al catalyst formed the lowest amount of carbon during reaction time on stream. The catalyst prepared without Mg(II) presented good activity results despite the lowest Ni dispersion. This behaviour was assigned to the presence of Ni sites more active for the steam reforming of glycerol than the ones on the catalyst promoted with Mg(II). However, this catalyst had the highest carbon deposition during reaction time on stream. High contents of Mg(II) inhibited carbon formation, this was evidenced by TPO analyses performed to used samples. Low carbon formation at high Mg(II) could be related to the higher basic character of the support as the content of Mg(II) increases. © 2013 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg(II). Effect of Mg (II) content
Autor:Dieuzeide, M.L.; Jobbagy, M.; Amadeo, N.
Filiación:Laboratorio de Procesos Catalíticos, Departamento de Ing. Química, Universidad de Buenos Aires, Pabellon de Industrias, Ciudad Universitaria, 1428 CABA, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 C.A.B.A., Argentina
Palabras clave:Glycerol Ni/γ-Al2O3 Mg(II) Steam reforming; Activity results; Carbon deposition; Carbon gasification; Catalytic performance; Catalytic properties; Steam reforming of glycerols; Structural characteristics; Textural characteristic; Aluminum; Carbon; Carbon dioxide; Catalyst activity; Catalyst selectivity; Glycerol; Nickel; Steam reforming; Catalyst supports
Año:2013
Volumen:213
Página de inicio:50
Página de fin:57
DOI: http://dx.doi.org/10.1016/j.cattod.2013.02.015
Título revista:Catalysis Today
Título revista abreviado:Catal Today
ISSN:09205861
CODEN:CATTE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09205861_v213_n_p50_Dieuzeide

Referencias:

  • Dieuzeide, M.L., Amadeo, N.E., (2010) Chemical Engineering and Technology, 33 (1), pp. 89-96
  • Adhikari, S., Fernando, S., Haryanto, A., (2007) Catalysis Today, 129, pp. 355-364
  • Czernik, S., French, R., Feik, C., Chornet, E., (2002) Industrial and Engineering Chemistry Research, 41, pp. 4209-4215
  • Hirai, T., Ikenaga, N., Miyake, T., Suzuki, T., (2005) Energy and Fuels, 19, pp. 1761-1762
  • Soares, R.R., Simonetti, D.A., Dumesic, J.A., (2006) Angewandte Chemie International Edition, 45, pp. 3982-3985
  • Simonetti, D.A., Kunkes, E.L., Dumesic, J.A., (2007) Journal of Catalysis, 247, pp. 298-306
  • Kunkes, E.L., Soares, R.R., Simonetti, D.A., Dumesic, J.A., (2009) Applied Catalysis B, 90, pp. 693-698
  • Adhikari, S., Fernando, S.D., Filip To, S.D., Bricka, R.M., Steele, P.H., Haryanto, A., (2008) Energy and Fuels, 22, pp. 1220-1226
  • Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Navarro, R.M., Sanchez-Sanchez, M.C., Fierro, J.L.G., (2008) Topics in Catalysis, 49, pp. 46-58
  • Aupretre, F., Descorme, C., Duprez, D., Casanave, D., Uzio, D.J., (2005) Journal of Catalysis, 233, pp. 464-477
  • Iriondo, A., Guemez, M.B., Barrio, V.L., Cambra, J.F., Arias, P.L., Sánchez-Sánchez, M.C., Navarro, R.M., Fierro, J.L.G., (2010) Scientific Bases for the Preparation of Heterogeneous Catalysts, 175, pp. 449-452. , Elsevier Amsterdam
  • Young Koo, K., Roh, H.S., Taek Seo, Y., Joo Seo, D., Lai Yoon, W., Bin Park, S., (2008) Applied Catalysis A, 340, pp. 183-190
  • Cheng, Z., Wu, Q., Li, J., Zhu, Q., (1996) Catalysis Today, 30, pp. 147-155
  • Alberton, A.L., Souza, M.M.V.M., Schmal, M., (2007) Catalysis Today, 123, pp. 257-264
  • Wang, S., Lu, G.Q., (2000) Journal of Chemical Technology and Biotechnology, 75, pp. 589-595
  • Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Sanchez-Sanchez, M.C., Navarro, R.M., Fierro, J.L.G., (2010) International Journal of Hydrogen Energy, 35, pp. 11622-11633
  • Sánchez-Sánchez, M.C., Navarro, R.M., Fierro, J.L.G., (2007) International Journal of Hydrogen Energy, 32, pp. 1462-1471
  • Profeti, L.P.R., Ticianelli, E.A., Assaf, E.M., (2009) International Journal of Hydrogen Energy, 34, pp. 5049-5060
  • Basagiannis, A.C., Verykios, X.E., (2007) Catalysis Today, 127, pp. 256-264
  • Rostrup-Nielsen, J.R., Sehested, J., (2002) Advances in Catalysis, 47, pp. 65-139
  • Dieuzeide, M.L., Iannibelli, V., Jobbagy, M., Amadeo, N., (2012) International Journal of Hydrogen Energy, 37, pp. 14926-14930
  • Patcas, F., Hönicke, D., (2005) Catalysis Communications, 6, pp. 23-27
  • Pompeo, F., Santori, G.F., Nichio, N.N., (2011) Catalysis Today, 172, pp. 183-188
  • Kitiyanan, B., Alvarez, W.E., Harvell, J.H., Resasco, D.E., (2000) Chemical Physics Letters, 317, pp. 497-503
  • De Lima, S.M., Da Silva, A.M., Da Costa, L.O.O., Graham, U.M., Jacobs, G., Davis, B.H., Mattos, L.V., Noronha, F.B., (2009) Journal of Catalysis, 268, pp. 268-281
  • Ozdemir, H., Faruk Öksüzömer, M.A., Ali Gürkaynak, M., (2010) International Journal of Hydrogen Energy, 35, pp. 12147-12160

Citas:

---------- APA ----------
Dieuzeide, M.L., Jobbagy, M. & Amadeo, N. (2013) . Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg(II). Effect of Mg (II) content. Catalysis Today, 213, 50-57.
http://dx.doi.org/10.1016/j.cattod.2013.02.015
---------- CHICAGO ----------
Dieuzeide, M.L., Jobbagy, M., Amadeo, N. "Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg(II). Effect of Mg (II) content" . Catalysis Today 213 (2013) : 50-57.
http://dx.doi.org/10.1016/j.cattod.2013.02.015
---------- MLA ----------
Dieuzeide, M.L., Jobbagy, M., Amadeo, N. "Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg(II). Effect of Mg (II) content" . Catalysis Today, vol. 213, 2013, pp. 50-57.
http://dx.doi.org/10.1016/j.cattod.2013.02.015
---------- VANCOUVER ----------
Dieuzeide, M.L., Jobbagy, M., Amadeo, N. Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg(II). Effect of Mg (II) content. Catal Today. 2013;213:50-57.
http://dx.doi.org/10.1016/j.cattod.2013.02.015