Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding the relationship between geographic range limits and physiological traits of vector species is under increasing demand to predict the potential effects of global warming, not only in terms of geographic distribution of vector species but also in terms of the risk of disease transmission. Like in many other insect species, the geographical distribution of Chagas' disease vectors is affected by temperature. This study examines, for the first time, the relationship between the limits of geographic distribution and thermo-tolerance of the most important vectors of Chagas disease, Triatoma infestans in southern South America and Rhodnius prolixus in northern South America and Central America, to test the climatic variability hypothesis (CVH). We applied species distribution modeling (SDM) using bioclimatic variables and identified the most important limiting factors of the habitat suitability. Then, we measured and compared: the critical thermal maximum (CTmax) and the upper lethal temperature (ULT) (measured by thermo-limit respirometry), chilled coma recovery (i.e. the time to recovery from 4 h at 0°C) and the critical thermal minimum (CTmin). For both species the minimum temperature of the coldest month was the most important abiotic factor restricting their geographic distribution. By taking a correlative approach and testing predictions with thermal tolerance traits, it was possible to explain the southern limit distribution for both species in terms of physiological constraints. The greater temperature tolerance of T. infestans compared to R. prolixus supports the CVH. © 2014 The Authors.

Registro:

Documento: Artículo
Título:Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors
Autor:de la Vega, G.J.; Medone, P.; Ceccarelli, S.; Rabinovich, J.; Schilman, P.E.
Filiación:Depto de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires, IBBEA-CONICET-UBA, Argentina
Centro de Estudios Parasitológicos y de Vectores (CONICET, CCT - La Plata, UNLP), Univ. Nacional de La Plata, La Plata, Provincia de Buenos Aires, Argentina
Laboratorio de Ecofisiologia de Insectos, Depto de Biodiversidad y Biologia Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEN), Univ. de Buenos Aires (UBA), Inst. de Biodiversidad y Biologia Experimental y Aplicada (IBBEA) - CONICET-UBA, Ciudad Universitaria, Pabellón II, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Palabras clave:bioclimatology; climate variation; disease transmission; disease vector; geographical distribution; global warming; limiting factor; numerical model; parasitic disease; population distribution; temperature tolerance; Central America; South America; Hexapoda; Rhodnius prolixus; Triatoma infestans
Año:2015
Volumen:38
Número:8
Página de inicio:851
Página de fin:860
DOI: http://dx.doi.org/10.1111/ecog.01028
Título revista:Ecography
Título revista abreviado:Ecography
ISSN:09067590
CODEN:ECOGE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09067590_v38_n8_p851_delaVega

Referencias:

  • Addo-Bediako, A., Thermal tolerance, climatic variability and latitude (2000) Proc. R. Soc. B, 267, pp. 739-745
  • Addo-Bediako, A., Metabolic cold adaptation in insects: a large-scale perspective (2002) Funct. Ecol, 16, pp. 332-338
  • Araújo, M.B., Heat freezes niche evolution (2013) Ecol. Lett, 16, pp. 1206-1219
  • Barbet-Massin, M., Selecting pseudo-absences for species distribution models: how, where and how many? - Methods Ecol (2012) Evol, 3, pp. 327-338
  • Blaksley, J.C., Carcavallo, R., (1968) La Enfermedad de Chagas-Mazza en la Argentina, , Ministerio de Salud, Buenos Aires, Argentina
  • Bozinovic, F., Physiological correlates of geographic distribution in animals (2011) Annu. Rev. Ecol. Evol. Syst, 42, pp. 155-179
  • Byrne, J., Predicting climate compatibility of biological control agents in their region of introduction (2004) Proceedings of the XI International Symposium on Biological Control of Weeds, pp. 28-35. , Cullen, J. M. (eds), CSIRO
  • Canals, M., Preliminary studies on temperature selection and activity cycles of Triatoma infestans and T. spinolai, Chilean vectors of Chagas disease (1997) J. Med. Entomol, 34, pp. 11-17
  • Carcavallo, R.U., Geographical distribution and alti-latitudinal dispersion (1999) Atlas of Chagas' disease vectors in the Americas, pp. 747-792. , Carcavallo, R. U. (eds), Editorial Fiocruz
  • Chown, S.L., Nicolson, S.W., (2004) Insect physiological ecology: mechanisms and patterns, , Oxford Univ. Press
  • Chown, S.L., Macrophysiology: large-scale patterns in physiological traits and their ecological implications (2004) Funct. Ecol, 18, pp. 159-167
  • Clark, N., The effect of temperature and humidity upon the eggs of the bug, Rhodnius prolixus (Heteroptera, Reduviidae) (1935) J. Anim. Ecol, 4, pp. 82-87
  • Clarke, A., What is cold adaptation and how should we measure it? - Integr. Comp (1991) Biol, 31, pp. 81-92
  • Compton, T.J., Thermal tolerance ranges and climate variability: a comparison between bivalves from differing climates (2007) J. Exp. Mar. Biol. Ecol, 352, pp. 200-211
  • Cruz, F.B., The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards (2005) J. Evol. Biol, 18, pp. 1559-1574
  • de Souza, R.d.C., Analysis of the geographical distribution of Triatoma vitticeps (Stål, 1859) based on data of species occurrence in Minas Gerais, Brazil (2010) Infect. Genet. Evol, 10, pp. 720-726
  • Diniz-Filho, J.A.F., Geographical patterns of Triatominae (Heteroptera: Reduviidae) richness and distribution in the Western Hemisphere (2013) Insect Conserv. Divers, 6, pp. 704-714
  • Elith, J., Novel methods improve prediction of species' distributions from occurrence data (2006) Ecography, 29, pp. 129-151
  • Elith, J., The art of modelling range-shifting species (2010) Methods Ecol. Evol, 1, pp. 330-342
  • Fergnani, P.N., Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae) (2013) Mem. Inst. Oswaldo Cruz, 108, pp. 997-1008
  • Ferreira, R.A., Do haematophagous bugs assess skin surface temperature to detect blood vessels? (2007) PLoS One, 2, p. e932
  • Fresquet, N., Lazzari, C.R., Response to heat in Rhodnius prolixus: the role of the thermal background (2011) J. Insect Physiol, 57, pp. 1446-1449
  • Galvão, C., A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes (2003) Zootaxa, 202, pp. 1-36
  • Gaston, K., Global pattern in biodiversity (2000) Nature, 405, pp. 220-227
  • Gaston, K., Chown, S.L., Elevation and climatic tolerance: a test using dung beetles (1999) Oikos, 86, pp. 584-590
  • Gaston, K., Blackburn, T., (2000) Pattern and process in macro-ecology, , Blackwell
  • Gaston, K., Macrophysiology: a conceptual reunification (2009) Am. Nat, 174, pp. 595-612
  • Gorla, D.E., Variables ambientales registradas por sensores remotos como indicadores de la distribución geográfica de Triatoma infestans (Heteroptera: Reduviidae) (2002) Ecol. Austral, 12, pp. 117-127
  • Gorla, D.E., Schofield, C.J., Population dynamics of Triatoma infestans under natural climatic conditions in the Argentine Chaco (1989) Med. Vet. Entomol, 3, pp. 179-194
  • Gorla, D.E., Efecto de la temperatura sobre la distribución de Triatoma infestans y el riesgo de transmisión vectorial de la enfermedad de Chagas en Argentina (1997) Acta Toxicol. Argent, 5, pp. 15-62
  • Gouveia, S.F., Climatic niche at physiological and macroecological scales: the thermal tolerance-geographical range interface and niche dimensionality (2014) Global Ecol. Biogeogr, 23, pp. 446-456
  • Graham, C.H., Hijmans, R.J., A comparison of methods for mapping species ranges and species richness (2006) Global Ecol. Biogeogr, 15, pp. 578-587
  • Graham, C.H., The influence of spatial errors in species occurrence data used in distribution models (2008) J. Appl. Ecol, 45, pp. 239-247
  • Guhl, F., Enfermedad de Chagas: realidad y perspectivas (2009) Rev. Biomed, 20, pp. 228-234
  • Hijmans, R.J., Graham, C.H., The ability of climate envelope models to predict the effect of climate change on species distributions (2006) Global Change Biol, 12, pp. 2272-2281
  • Hijmans, R.J., Elith, J., (2013), http://cran.r-project.org/web/packages/dismo/vignettes/sdm, Species distribution modeling with R; Hill, M.P., Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, Halotydeus destructor (2012) Divers. Distrib, 18, pp. 191-203
  • Hurlbert, A.H., Jetz, W., Species richness, hotspots, and the scale dependence of range maps in ecology and conservation (2007) Proc. Natl Acad. Sci. USA, 104, pp. 13384-13389
  • Jetz, W., Ecological correlates and conservation implications of overestimating species geographic ranges (2008) Conserv. Biol, 22, pp. 110-119
  • Klok, C.J., Upper thermal tolerance and oxygen limitation in terrestrial arthropods (2004) J. Exp. Biol, 207, pp. 2361-2370
  • Lazzari, C.R., Temperature preference in Triatoma infestans (Hemiptera: Reduviidae) (1991) Bull. Entomol. Res, 81, pp. 273-276
  • Lazzari, C.R., Núñez, J.A., The response to radiant heat and the estimation of the temperature of distant sources in Triatoma infestans (1989) J. Insect Physiol, 35, pp. 525-529
  • Lazzari, C.R., Núñez, J.A., Blood temperature and feeding behavior in Triatoma infestans (Heteroptera: Reduviidae) (1989) Entomol. Gen, 14, pp. 183-188
  • Lighton, J.R.B., Turner, R.J., Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus (2004) J. Exp. Biol, 207, pp. 1903-1913
  • Lighton, J.R.B., Low metabolic rate in scorpions: implications for population biomass and cannibalism (2001) J. Exp. Biol, 204, pp. 607-613
  • Lobo, J.M., AUC: a misleading measure of the performance of predictive distribution models (2007) Global Ecol. Biogeogr, 17, pp. 145-151
  • Luz, C., Development of Rhodnius prolixus (Hemiptera: Reduviidae) under constant and cyclic conditions of temperature and humidity (1999) Mem. Inst. Oswaldo Cruz, 94, pp. 403-409
  • Lyons, C.L., Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus (2012) Malaria J, 11, p. 226
  • Mackenzie, D.I., Royle, J.A., Designing occupancy studies: general advice and allocating survey effort (2005) J. Appl. Ecol, 42, pp. 1105-1114
  • Mitchell, J.D., Critical thermal limits and temperature tolerance in the harvester termite Hodotermes mossambicus (Hagen) (1993) J. Insect Physiol, 39, pp. 523-528
  • Moncayo, A., Chagas disease: epidemiology and prospects for interruption of transmission in the Americas (1992) World Health Stat. Q, 45, pp. 276-279
  • Mueller, U.G., Evolution of cold-tolerant fungal symbionts permits winter fungi culture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis (2011) Proc. Natl Acad. Sci. USA, 108, pp. 4053-4056
  • Okasha, A.Y.K., Effects of high temperature in Rhodnius prolixus (Stål) (1964) Nature, 204, pp. 1221-1222
  • Okasha, A.Y.K., Effects of sub-lethal high temperature on an insect, Rhodnius prolixus (Stål). III. Metabolic changes and their bearing on the cessation and delay of moulting (1968) J. Exp. Biol, 48, pp. 475-486
  • Okasha, A.Y.K., Changes in the respiratory metabolism of Rhodnius prolixus as induced by temperature (1968) J. Insect Physiol, 14, pp. 1621-1634
  • Osovitz, C.J., Hofmann, G.E., Thermal history- dependent expression of the hsp70 gene in purple sea urchins: biogeographic patterns and the effect of temperature acclimation (2005) J. Exp. Mar. Biol. Ecol, 27, pp. 134-143
  • Phillips, S.J., Maximum entropy modeling of species geographic distributions (2006) Ecol. Model, 190, pp. 231-259
  • Ragland, G.J., Kingsolver, J.G., Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii (2008) Evolution, 62, pp. 1345-1357
  • Randolph, S.E., Perspectives on climate change impacts on infectious diseases (2009) Ecology, 90, pp. 927-931
  • Richmond, O.M., Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents (2010) PLoS One, 5, p. e12899
  • Rodriguero, M., Gorla, D.E., Latitudinal gradient of species richness in the New World Triatominae (Reduviidae) (2004) Global Ecol. Biogeogr, 13, pp. 75-84
  • Rolandi, C., Schilman, P.E., Linking global warming, metabolic rate of hematophagous vectors, and the transmission of infectious diseases (2012) Front. Physiol, 3, p. 75
  • Schilman, P.E., Lazzari, C., Temperature preference in Rhodnius prolixus, effects and possible consequences (2004) Acta Trop, 90, pp. 115-122
  • Schofield, C.J., (1994) Triatominae - biology and control, , Eurocommunica Publications, UK
  • Schofield, C.J., Galvão, C., Classification, evolution, and species groups within the Triatominae (2009) Acta Trop, 110, pp. 88-100
  • Sexton, J.P., Evolution and ecology of species range limits (2009) Annu. Rev. Ecol. Evol. Syst, 40, pp. 415-436
  • Snyder, G.K., Weathers, W.W., Temperature adaptations in amphibians (1975) Am. Nat, 109, pp. 93-101
  • Spicer, J.I., Gaston, K.J., (1999) Physiological diversity and its ecological implications, , Blackwell
  • Stevens, G.C., The latitudinal gradient in geographical range: how so many species coexist in the tropics (1989) Am. Nat, 133, pp. 240-256
  • Sunday, J.M., Global analysis of thermal tolerance and latitude in ectotherms (2011) Proc. R. Soc. B, 278, pp. 1823-1830
  • Terblanche, J.S., Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling (2006) Am. J. Trop. Med. Hyg, 74, pp. 786-794
  • Terblanche, J.S., Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate (2009) Physiol. Biochem. Zool, 82, pp. 495-503
  • Terribile, L.C., How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end (2010) Braz. J. Biol, 70, pp. 263-269
  • VanDerWal, J., Selecting pseudo-absence data for presence-only distribution modeling. How far should you stray from what you know? (2009) Ecol. Model, 220, pp. 589-594
  • Vinauger, C., Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response (PER) (2013) J. Exp. Biol, 216, pp. 892-900
  • WHO Expert Committee on the Control of Chagas Disease (2000) Control of Chagas disease: second report of the WHO expert committee, , Brasilia, Brazil
  • Zuur, A.F., (2009) Mixed effects models and extensions in ecology with R, , Springer

Citas:

---------- APA ----------
de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J. & Schilman, P.E. (2015) . Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors. Ecography, 38(8), 851-860.
http://dx.doi.org/10.1111/ecog.01028
---------- CHICAGO ----------
de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J., Schilman, P.E. "Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors" . Ecography 38, no. 8 (2015) : 851-860.
http://dx.doi.org/10.1111/ecog.01028
---------- MLA ----------
de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J., Schilman, P.E. "Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors" . Ecography, vol. 38, no. 8, 2015, pp. 851-860.
http://dx.doi.org/10.1111/ecog.01028
---------- VANCOUVER ----------
de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J., Schilman, P.E. Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors. Ecography. 2015;38(8):851-860.
http://dx.doi.org/10.1111/ecog.01028