Artículo

Bini, L.M.; Diniz-Filho, J.A.F.; Rangel, T.F.L.V.B.; Akre, T.S.B.; Albaladejo, R.G.; Albuquerque, F.S.; Aparicio, A.; Araújo, M.B.; Baselga, A.; Beck, J.; Bellocq, M.I.; Böhning-Gaese, K.; Borges, P.A.V.; Castro-Parga, I.; Chey, V.K.; Chown, S.L.; De Marco Jr., P.; Dobkin, D.S. (...) Hawkins, B.A. "Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression" (2009) Ecography. 32(2):193-204
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A major focus of geographical ecology and macroecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regression, because the relative importance of explanatory variables, as measured by regression coefficients, can shift depending on whether spatially explicit or non-spatial modeling is used. However, the extent to which coefficients may shift and why shifts occur are unclear. Here, we analyze the relationship between environmental predictors and the geographical distribution of species richness, body size, range size and abundance in 97 multi-factorial data sets. Our goal was to compare standardized partial regression coefficients of non-spatial ordinary least squares regressions (i.e. models fitted using ordinary least squares without taking autocorrelation into account; "OLS models" hereafter) and eight spatial methods to evaluate the frequency of coefficient shifts and identify characteristics of data that might predict when shifts are likely. We generated three metrics of coefficient shifts and eight characteristics of the data sets as predictors of shifts. Typical of ecological data, spatial autocorrelation in the residuals of OLS models was found in most data sets. The spatial models varied in the extent to which they minimized residual spatial autocorrelation. Patterns of coefficient shifts also varied among methods and datasets, although the magnitudes of shifts tended to be small in all cases. We were unable to identify strong predictors of shifts, including the levels of autocorrelation in either explanatory variables or model residuals. Thus, changes in coefficients between spatial and non-spatial methods depend on the method used and are largely idiosyncratic, making it difficult to predict when or why shifts occur. We conclude that the ecological importance of regression coefficients cannot be evaluated with confidence irrespective of whether spatially explicit modelling is used or not. Researchers may have little choice but to be more explicit about the uncertainty of models and more cautious in their interpretation. © 2009 Ecography.

Registro:

Documento: Artículo
Título:Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression
Autor:Bini, L.M.; Diniz-Filho, J.A.F.; Rangel, T.F.L.V.B.; Akre, T.S.B.; Albaladejo, R.G.; Albuquerque, F.S.; Aparicio, A.; Araújo, M.B.; Baselga, A.; Beck, J.; Bellocq, M.I.; Böhning-Gaese, K.; Borges, P.A.V.; Castro-Parga, I.; Chey, V.K.; Chown, S.L.; De Marco Jr., P.; Dobkin, D.S.; Ferrer-Castán, D.; Field, R.; Filloy, J.; Fleishman, E.; Gómez, J.F.; Hortal, J.; Iverson, J.B.; Kerr, J.T.; Kissling, W.D.; Kitching, I.J.; León-Cortés, J.L.; Lobo, J.M.; Montoya, D.; Morales-Castilla, I.; Moreno, J.C.; Oberdorff, T.; Olalla-Tárraga, M.A.; Pausas, J.G.; Qian, H.; Rahbek, C.; Rodríguez, M.A.; Rueda, M.; Ruggiero, A.; Sackmann, P.; Sanders, N.J.; Terribile, L.C.; Vetaas, O.R.; Hawkins, B.A.
Filiación:Depto de Biologia Geral, ICB, Univ. Federal de Goias, CP 131, 74001-970 Goiania, GO, Brazil
Dept of Ecology and Evolutionary Biology, Univ. of Connecticut, Storrs, CT 06269, United States
Dept of Biological and Environmental Sciences, Longwood Univ., Farmville, VA 23909, United States
Depto de Biologia Vegetal y Ecologia, Univ. de Sevilla, c/Prof. Garcia Gonzalez no 2, ES-41012 Sevilla, Spain
Depto de Ecologia, Univ. de Alcala, ES-28871 Alcala de Henares, Madrid, Spain
Depto de Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), ES-28006 Madrid, Spain
Dept of Environmental Sciences, Inst. of Biogeography, Univ. of Basel, St.Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
Depto de Ecologia, Genetica y Evolucio, Facultad de Ciencias Exactas y Naturales, CONICET, Ciudad Universitaria Pab. 2, 1428 Buenos Aires, Argentina
Inst. fur Zoologie, Johannes Gutenberg-Univ. Mainz, Becherweg 13, DE-55099 Mainz, Germany
Depto de Ciencias Agrarias, Univ. dos Acores, CITA A (Azorean Biodiversity Group), Terra Cha, PT- 9700-851 Angra do Heroismo, Terceira, Acores, Portugal
Depto de Ecologia C/Darwin 2, Univ. Autonoma de Madrid, ES-28049 Madrid, Spain
Entomology Section, Forest Research Centre of Sabah, Sepilok, P.O. Box 1407, 90715 Sandakan, Malaysia
DST-NRF Centre of Excellence for Invasion Biology, Stellenbosch Univ., Private Bag XI, Matieland 7602, South Africa
High Desert Ecological Research Inst., 15 S.W. Colorado Ave., Bend, OR 97702, United States
Area de Ecologia, Facultad de Biologia, Univ. de Salamanca, ES-37007 Salamanca, Spain
School of Geography, Univ. of Nottingham, Nottingham NG7 2RD, United Kingdom
National Center for Ecological Analysis and Synthesis, 735 State St, Santa Barbara, CA 93101, United States
NERC Centre for Population Biology, Imperial College, Silwood Park, Ascot SL5 7PY, United Kingdom
Dept of Biology, Earlham College, Richmond, IN 47374, United States
Dept of Biology, Univ. of Ottawa, Ottawa, ON KIN 6N5, Canada
Dept of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
Depto de Ecologia y Sistematica Terrestre, El Colegio de la Frontera Sur, Carr. Panamericana y Av. Periferico Sur s/n, San Cristobal de Chiapas 29290, Mexico
Depto de Biologia, Univ. Autonoma de Madrid, C/ Darwin 2, ES-28049 Madrid, Spain
IRD, DMPA, Museum National dHistoire Naturelle, 43 Rue Cuvier, FR-75005 Paris, France
Centro de Investigacion sobre Desertificacion (CIDE, CSIC), Apartado Oficial, ES-46470 Albal, Valencia, Spain
Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, United States
Center for Macroecology, Dept of Biology, Univ. of Copenhagen, DK-2100 Copenhagen, Denmark
Laboratorio Ecotono, Centro Regional Universitario Bariloche, INIBIOMA-CONICET, Quintral 1250, 8400 Bariloche, Rio Negro, Argentina
Dept of Ecology and Evolutionary Biology, Univ. of Tennessee, Knoxville, TN 37996, United States
UNIFOB Global, Univ. of Bergen, NO-5015 Bergen, Norway
Dept of Ecology and Evolutionary Biology, Univ. of California, Irvine, CA 92697, United States
Palabras clave:abundance; body size; data set; least squares method; macroecology; range size; regression analysis; species richness
Año:2009
Volumen:32
Número:2
Página de inicio:193
Página de fin:204
DOI: http://dx.doi.org/10.1111/j.1600-0587.2009.05717.x
Título revista:Ecography
Título revista abreviado:Ecography
ISSN:09067590
CODEN:ECOGE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09067590_v32_n2_p193_Bini

Referencias:

  • Araújo, M.B., New, M., Ensemble forecasting of species distributions (2007) Trends Ecol. Evol., 22, pp. 42-47
  • Araújo, M.B., Quaternary climate changes explain diversity among reptiles and amphibians (2008) Ecography, 31, pp. 8-15
  • Bahn, V., J. O'Connor, R., B. Krohn, W., Importance of spatial autocorrelation in modeling bird distributions at a continental scale (2006) Ecography, 29 (6), pp. 835-844. , DOI 10.1111/j.2006.0906-7590.04621.x
  • Bickford, S.A., Laffan, S.W., Multi-extent analysis of the relationship between pteridophyte species richness and climate (2006) Global Ecology and Biogeography, 15 (6), pp. 588-601. , DOI 10.1111/j.1466-8238.2006.00250.x
  • Bini, L.M., Diniz Filho, J.A., Bonfim, F., Bastos, R.P., Local and regional species richness relationships in viperid snake assemblages from South America: Unsaturated patterns at three different spatial scales (2000) Copeia, (3), pp. 799-805
  • Borcard, D., Legendre, P., All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices (2002) Ecological Modelling, 153 (1-2), pp. 51-68. , DOI 10.1016/S0304-3800(01)00501-4, PII S0304380001005014
  • Borcard, D., Partialling out the spatial component of ecological variation (1992) Ecology, 73, pp. 1045-1055
  • Borcard, D., Legendre, P., Avois-Jacquet, C., Tuomisto, H., Dissecting the spatial structure of ecological data at multiple scales (2004) Ecology, 85 (7), pp. 1826-1832
  • Burnham, K.P., Anderson, D.R., (2002) Model selection and multimodel inference. A practical information - theoretical approach., , Springer
  • Cassemiro F. A., S., Non-stationary, diversity gradients and the metabolic theory of ecology (2007) Global Ecol. Biogeogr., 16, pp. 820-822
  • Cressie N. A., C., (1993) Statistics for spatial data analysis., , Wiley
  • Diniz-Filho, J.A.F., Bini, L.M., Modelling geographical patterns in species richness using eigenvector-based spatial filters (2005) Global Ecology and Biogeography, 14 (2), pp. 177-185. , DOI 10.1111/j.1466-822X.2005.00147.x
  • Diniz-Filho J. A., F., Spatial autocorrelation and red herrings in geographical ecology (2003) Global Ecol. Biogeogr., 12, pp. 53-64
  • Diniz-Filho J. A., F., Model selection and information theory in geographical ecology (2008) Global Ecol. Biogeogr., 17, pp. 479-488
  • Dormann, C.F., Effects of incorporating spatial autocorrelation into the analysis of species distribution data (2007) Global Ecology and Biogeography, 16 (2), pp. 129-138. , DOI 10.1111/j.1466-8238.2006.00279.x
  • Dormann, C.F., Methods to account for spatial autocorrelation in the analysis of distributional species data: a review (2007) Ecography, 30, pp. 609-628
  • Foody, G.M., Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna (2004) Global Ecology and Biogeography, 13 (4), pp. 315-320. , DOI 10.1111/j.1466-822X.2004.00097.x
  • Fortin, M.-J., Payette, S., How to test the significance of the relation between spatially autocorrelated data at the landscape scale: A case study using fire and forest maps (2002) Ecoscience, 9 (2), pp. 213-218
  • Fortin, M.-J., Dale, M., (2005) Spatial analysis: a guide for ecologists., , Cambridge Univ. Press
  • Fotheringham, A.S., (2002) Geographically weighted regression: the analysis of spatially varying relationships., , Wiley
  • Grace, J.B., Bollen, K.A., Interpreting the results from multiple regression and structural equation models (2005) Bull. Ecol. Soc. Am., 86, pp. 283-294
  • Graham, M.H., Confronting multicollinearity in ecological multiple regression (2003) Ecology, 84 (11), pp. 2809-2815
  • Griffith, D.A., Some guidelines for specifying the geographic weights matrix contained in spatial statistical models (1996) Practical handbook of spatial statistics., pp. 65-82. , Arlinghaus, S. L. CRC Press
  • Griffith, D.A., Peres-Neto, P.R., Spatial modeling in ecology: the flexibility of eigenfunction spatial analysis (2006) Ecology, 87, pp. 2603-2613
  • Haining, R., (1990) Spatial data analysis in the social and environmental sciences., , Cambridge Univ. Press
  • Haining, R., (2002) Spatial data analysis., , Cambridge Univ. Press
  • Hawkins, B.A., Porter, E.E., Diniz-Filho, J.A.F., Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds (2003) Ecology, 84 (6), pp. 1608-1623
  • Hawkins, B.A., Diniz-Filho, J.A.F., Mauricio Bini, L., De Marco, P., Blackburn, T.M., Red herrings revisited: Spatial autocorrelation and parameter estimation in geographical ecology (2007) Ecography, 30 (3), pp. 375-384. , DOI 10.1111/j.2007.0906-7590.05117.x
  • Hobbs, N.T., Hilborn, R., Alternatives to statistical hypothesis testing in ecology: a guide to self teaching (2006) Ecol. Appl., 16, pp. 5-19
  • Hoeting, J.A., Model selection for geostatistical models (2006) Ecol. Appl., 16, pp. 87-98
  • Kissling, W.D., Carl, G., Spatial autocorrelation and the selection of simultaneous autoregressive models (2008) Global Ecology and Biogeography, 17 (1), pp. 59-71. , DOI 10.1111/j.1466-8238.2007.00334.x
  • Kissling, W.D., Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? (2008) Global Ecol. Biogeogr., 17, pp. 327-339
  • Kuhn, I., Incorporating spatial autocorrelation may invert observed patterns (2007) Diversity and Distributions, 13 (1), pp. 66-69. , DOI 10.1111/j.1472-4642.2006.00293.x
  • Legendre, P., Spatial autocorrelation: trouble or new paradigm? (1993) Ecology, 74 (6), pp. 1659-1673
  • Legendre, P., Legendre, L., (1998) Numerical ecology, 2nd English ed., , Elsevier
  • Legendre, P., The consequences of spatial structure for the design and analysis of ecological field surveys (2002) Ecography, 25, pp. 601-616
  • Lennon, J.J., Red-shifts and red herrings in geographical ecology (2000) Ecography, 23 (1), pp. 101-113
  • Lichstein, J.W., Simons, T.R., Shriner, S.A., Franzreb, K.E., Spatial autocorrelation and autoregressive models in ecology (2002) Ecological Monographs, 72 (3), pp. 445-463
  • Olden, J.D., Jackson, D.A., Torturing data for the sake of generality: How valid are our regression models? (2000) Ecoscience, 7 (4), pp. 501-510
  • Ramirez, L., Diniz-Filho, J.A.F., Hawkins, B.A., Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds (2008) Global Ecology and Biogeography, 17 (1), pp. 100-110. , DOI 10.1111/j.1466-8238.2007.00346.x
  • Rangel T. F. L. V., B., Towards an integrated computational tool for spatial analysis in macroecology and biogeography (2006) Global Ecol. Biogeogr., 15, pp. 321-431
  • Schabenberg, O., Gotway, C.A., (2005) Statistical methods for spatial data analysis., , Chapman and Hall
  • Sokal, R.R., Rohlf, F.J., (1995) Biometry, 3rd ed., , W. H. Freeman
  • Shipley, B., (2000) Cause and correlation in biology., , Cambridge Univ. Press
  • Tognelli, M.F., Kelt, D.A., Analysis of determinants of mammalian species richness in South America using spatial autoregressive models (2004) Ecography, 27 (4), pp. 427-436. , DOI 10.1111/j.0906-7590.2004.03732.x
  • Wang, Q., Ni, J., Tenhunen, J., Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems (2005) Global Ecology and Biogeography, 14 (4), pp. 379-393. , DOI 10.1111/j.1466-822X.2005.00153.x
  • Whittingham, M.J., Stephens, P.A., Bradbury, R.B., Freckleton, R.P., Why do we still use stepwise modelling in ecology and behaviour? (2006) Journal of Animal Ecology, 75 (5), pp. 1182-1189. , DOI 10.1111/j.1365-2656.2006.01141.x

Citas:

---------- APA ----------
Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V.B., Akre, T.S.B., Albaladejo, R.G., Albuquerque, F.S., Aparicio, A.,..., Hawkins, B.A. (2009) . Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression. Ecography, 32(2), 193-204.
http://dx.doi.org/10.1111/j.1600-0587.2009.05717.x
---------- CHICAGO ----------
Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V.B., Akre, T.S.B., Albaladejo, R.G., Albuquerque, F.S., et al. "Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression" . Ecography 32, no. 2 (2009) : 193-204.
http://dx.doi.org/10.1111/j.1600-0587.2009.05717.x
---------- MLA ----------
Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V.B., Akre, T.S.B., Albaladejo, R.G., Albuquerque, F.S., et al. "Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression" . Ecography, vol. 32, no. 2, 2009, pp. 193-204.
http://dx.doi.org/10.1111/j.1600-0587.2009.05717.x
---------- VANCOUVER ----------
Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F.L.V.B., Akre, T.S.B., Albaladejo, R.G., Albuquerque, F.S., et al. Coefficient shifts in geographical ecology: An empirical evaluation of spatial and non-spatial regression. Ecography. 2009;32(2):193-204.
http://dx.doi.org/10.1111/j.1600-0587.2009.05717.x