Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of the work was to evaluate the capability of the SMHI-RCA4 regional climate model (RCM) driven by the ERA-Interim reanalysis to simulate heat waves in Argentina. Firstly, we evaluated simulations of summer daily maximum temperature (Tmax) against observed data from nine stations. The model showed a warm Tmax bias at six locations and the smallest and/or negative biases were located over regions with complex topography. Heat waves were defined based on exceedances of the daily 90th percentile of Tmax at individual stations. The model overestimated the intensity, duration, and number of heat waves at all locations, but more intense heat waves were underestimated. In particular, we analysed the extreme heat wave that occurred in November 1985 in northeastern Argentina and found out that a possible reason for its underestimation was an inaccurate simulation of the sea level pressure gradient in the region. The weaker pressure gradient in the model caused a reduction of the warm northerly advection. Finally, we studied how the parameters of heat waves varied among different phases of El Niño-Southern Oscillation (ENSO) for observed and modelled data. At five stations, the strongest heat waves occurred during La Niña years and were probably associated with the decrease in precipitation. © 2017 Royal Meteorological Society

Registro:

Documento: Artículo
Título:Capability of the SMHI-RCA4 RCM driven by the ERA-Interim reanalysis to simulate heat waves in Argentina
Autor:Collazo, S.; Lhotka, O.; Rusticucci, M.; Kyselý, J.
Filiación:Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales (DCAO-FCEN-UBA), Universidad de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
Palabras clave:Argentina; ENSO; extreme events; heat waves; maximum temperature; RCM; Atmospheric pressure; Climate models; Nickel; Pressure gradient; Sea level; Argentina; ENSO; Extreme events; Heat waves; Maximum temperature; Climatology; climate modeling; El Nino-Southern Oscillation; extreme event; heat wave; high temperature; pressure gradient; regional climate; sea level pressure; summer; Argentina
Año:2018
Volumen:38
Número:1
Página de inicio:483
Página de fin:496
DOI: http://dx.doi.org/10.1002/joc.5190
Título revista:International Journal of Climatology
Título revista abreviado:Int. J. Climatol.
ISSN:08998418
CODEN:IJCLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v38_n1_p483_Collazo

Referencias:

  • Alessandro, A.P., de Garín, A.B., A study on predictability of human physiological strain in Buenos Aires City (2003) Meteorol. Appl., 10, pp. 263-271. , https://doi.org/10.1017/S1350482703003062
  • Alvarez, M.S., Vera, C.S., Kiladis, G.N., Liebmann, B., Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America (2016) Clim. Dyn., 46, pp. 245-262. , https://doi.org/10.1007/s00382-015-2581-6
  • Anderson, B.G., Bell, M.L., Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States (2009) Epidemiology, 20, pp. 205-213. , https://doi.org/10.1097/EDE.0b013e318190ee08
  • Barriopedro, D., Fischer, E.M., Luterbacher, J., Trigo, R.M., Garcia-Herrera, R., The hot summer of 2010: redrawing the temperature record map of Europe (2011) Science, 332, pp. 220-224. , https://doi.org/10.1126/science.1201224
  • Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S., Halsnaes, K., Woth, K., Future extreme events in European climate: an exploration of regional climate model projections (2007) Clim. Change, 81, pp. 71-95. , https://doi.org/10.1007/s10584-006-9226-z
  • Campetella, C., Rusticucci, M., Synoptic analysis of an extreme heat wave over Argentina in March 1980 (1998) Meteorol. Appl., 5, pp. 217-226. , https://doi.org/10.1017/S1350482798000851
  • Carril, A.F., Menéndez, C.G., Remedio, A.R.C., Robledo, F., Sörensson, A., Tencer, B., Boulanger, J.P., Zaninelli, P., Performance of a multi-RCM ensemble for south eastern South America (2012) Clim. Dyn., 39, pp. 2747-2768. , https://doi.org/10.1007/s00382-012-1573-z
  • Carril, A.F., Cavalcanti, I.F.A., Menéndez, C.G., Sörensson, A., López-Franca, N., Rivera, J.A., Robledo, F., Zamboni, L., Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project (2016) Clim. Res., 68, pp. 95-116. , https://doi.org/10.3354/cr01374
  • Cerne, S.B., Vera, C.S., Influence of the intraseasonal variability on heat waves in subtropical South America (2011) Clim. Dyn., 36, pp. 2265-2277. , https://doi.org/10.1007/s00382-010-0812-4
  • De Bono, A., Giuliani, G., Kluser, S., Peduzzi, P., Impacts of summer 2003 heat wave in Europe. UNEP/DEWA/GRID-Europe (2004) Environ. Alert Bull., 2, pp. 1-4
  • De Haan, L.L., Kanamitsu, M., Increase in near-surface temperature simulation skill due to predictive soil moisture in a numerical seasonal simulation under observed SST forcing (2007) J. Hydrometeorol., 9, pp. 48-60. , https://doi.org/10.1175/2007JHM796.1
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system (2011) Q. J. Roy. Meteorol. Soc., 137, pp. 553-597. , https://doi.org/10.1002/qj.828
  • Della-Marta, P.M., Luterbacher, J., Weissenfluh, H., Xoplaki, E., Brunet, M., Wanner, H., Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability (2007) Clim. Dyn., 29, pp. 251-275. , https://doi.org/10.1007/s00382-007-0233-1
  • Grimm, A.M., Barros, V.R., Doyle, M., Climate variability in southern South America associated with El Niño and La Niña events (2000) J. Clim., 13, pp. 35-58
  • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J.J., Fiorino, M., Potter, G.L., NCEP–DOE AMIP-II Reanalysis (R-2) (2002) Bull. Amer. Meteor. Soc., 83, pp. 1631-1643. , https://doi.org/10.1175/BAMS-83-11-1631
  • Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Yamada, T., Regions of strong coupling between soil moisture and precipitation (2004) Science, 305 (5687), pp. 1138-1140. , https://doi.org/10.1126/science.1100217
  • Kyselý, J., Recent severe heat waves in central Europe: how to view them in a long-term prospect? (2010) Int. J. Climatol., 109, pp. 89-109. , https://doi.org/10.1002/joc.1874
  • Lhotka, O., Kyselý, J., Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations (2015) Clim. Dyn., 45, pp. 2351-2366. , https://doi.org/10.1007/s00382-015-2475-7
  • Lhotka, O., Kyselý, J., Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe (2015) Int. J. Climatol., 35, pp. 1232-1244. , https://doi.org/10.1002/joc.4050
  • Lhotka, O., Kyselý, J., Hot central-European summer of 2013 in a long-term context (2015) Int. J. Climatol., 35, pp. 4399-4407. , https://doi.org/10.1002/joc.4277
  • López-Franca, N., Zaninelli, P.G., Carril, A.F., Menéndez, C.G., Sánchez, E., Changes in temperature extremes for 21st century scenarios over South America derived from a multi-model ensemble of regional climate models (2016) Clim. Res., 68, pp. 151-167. , https://doi.org/10.3354/cr01393
  • Meehl, G., Tebaldi, C., More intense, more frequent, and longer lasting heat waves in the 21st century (2004) Science, 305, pp. 994-997. , https://doi.org/10.1126/science.1098704
  • Menéndez, C.G., Saulo, A.C., Li, Z.X., Simulation of south American wintertime climate with a nesting system (2001) Clim. Dyn., 17, pp. 219-231. , https://doi.org/10.1007/s003820000107
  • Menéndez, C.G., de Castro, M., Boulanger, J.P., D'Onofrio, A., Sanchez, E., Sörensson, A.A., Blazquez, J., Rojas, M., Downscaling extreme month-long anomalies in southern South America (2010) Clim. Change, 98, pp. 379-403. , https://doi.org/10.1007/s10584-009-9739-3
  • Mueller, B., Seneviratne, S.I., Hot days induced by precipitation deficits at the global scale (2012) Proc. Natl. Acad. Sci., 109 (31), pp. 12398-12403. , https://doi.org/10.1073/pnas.1204330109
  • Nicolini, M., Salio, P., Katzfey, J.J., McGregor, J.L., Saulo, A.C., January and July regional climate simulation over South America (2002) J. Geophys. Res., 107 (22), pp. 1-13. , https://doi.org/10.1029/2001JD000736
  • Pearce, J.L., Hyer, M., Hyndman, R.J., Loughnan, M., Dennekamp, M., Nicholls, N., Exploring the influence of short-term temperature patterns on temperature-related mortality: a case-study of Melbourne, Australia (2016) Environ. Health, 15, pp. 107-117. , https://doi.org/10.1186/s12940-016-0193-1
  • Perkins, S.E., Alexander, L.V., On the measurement of heat waves (2013) J. Clim., 26, pp. 4500-4517. , https://doi.org/10.1175/JCLI-D-12-00383.1
  • Perkins, S.E., Alexander, L.V., Nairn, J.R., Increasing frequency, intensity and duration of observed global heatwaves and warm spells (2012) Geophys. Res. Lett., 39, p. L20714. , https://doi.org/10.1029/2012GL053361
  • Robine, J.M., Cheung, S.L.K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.P., Herrmann, F.R., Death toll exceeded 70,000 in Europe during the summer of 2003 (2008) C. R. Biol., 331, pp. 171-178. , https://doi.org/10.1016/j.crvi.2007.12.001
  • Ropelewski, C.F., Halpert, M.S., Global and regional scale precipitation patterns associated with El Niño/Southern Oscillation (1987) Mon. Weather Rev., 115, pp. 2161-2165
  • Rusticucci, M., Observed and simulated variability of extreme temperature events over South America (2012) Atmos. Res., 106, pp. 1-17. , https://doi.org/10.1016/j.atmosres.2011.11.001
  • Rusticucci, M., Penalba, O.C., Interdecadal changes in the precipitation seasonal cycle over Southern South America and their relationship with surface temperature (2000) Clim. Res., 16, pp. 1-15
  • Rusticucci, M., Vargas, W., Synoptic situations related to spells of extreme temperatures over Argentina (1995) Meteorol. Appl., 2, pp. 291-300
  • Rusticucci, M., Kyselý, J., Almeira, G., Lhotka, O., Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires (2016) Theor. Appl. Climatol., 124, pp. 679-689. , https://doi.org/10.1007/s00704-015-1445-7
  • Rusticucci, M., Barrucand, M., Collazo, S., Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases (2017) Int. J. Climatol., 37, pp. 3003-3017. , https://doi.org/10.1002/joc.4895
  • Samuelsson, P., Jones, C.G., Willén, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Wyser, K., The Rossby Centre regional climate model RCA3: model description and performance (2011) Tellus A, 63, pp. 4-23. , https://doi.org/10.1111/j.1600-0870.2010.00478.x
  • Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Teuling, A.J., Investigating soil moisture–climate interactions in a changing climate: a review (2011) Earth Sci. Rev., 99 (3), pp. 125-161. , https://doi.org/10.1016/j.earscirev.2010.02.004
  • Skansi, M., Brunet, M., Sigró, J., Aguilar, E., Arevalo Groening, J.A., Bentancur, O.J., Castellón Geier, Y.R., Jones, P.D., Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America (2013) Global Planet. Change, 100, pp. 295-307. , https://doi.org/10.1016/j.gloplacha.2012.11.004
  • Solman, S.A., Regional climate modeling over South America: a review (2013) Adv. Meteorol., 2013. , https://doi.org/10.1155/2013/504357, 5043
  • Solman, S.A., Systematic temperature and precipitation biases in the CLARIS-LPB ensemble simulations over South America and possible implications for climate projections (2016) Clim. Res., 68, pp. 117-136. , https://doi.org/10.3354/cr01362
  • Solman, S.A., Sanchez, E., Samuelsson, P., da Rocha, R., Li, L., Marengo, J., Pessacg, N.L., Chou, S.C., Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA- Interim reanalysis: models' performance and uncertainties (2013) Clim. Dyn., 41, pp. 1139-1157. , https://doi.org/10.1007/s00382-013-1667-2
  • Sörensson, A., Berbery, E.H., A note on soil moisture memory and interactions with surface climate for different vegetation types in La Plata basin (2015) J. Hydrometeorol., 16, pp. 716-729. , https://doi.org/10.1175/JHM-D-14-0102.1
  • Sörensson, A.A., Menéndez, C.G., Summer soil–precipitation coupling in South America (2011) Tellus, 63A, pp. 56-68. , https://doi.org/10.1111/j.1600-0870.2010.00468.x
  • Tencer, B., Rusticucci, M., Jones, P., Lister, D., A southeastern South American daily gridded dataset of observed surface minimum and maximum temperature for 1961−2000 (2011) Bull. Am. Meteorol. Soc., 92, pp. 1339-1346. , https://doi.org/10.1175/2011BAMS3148.1
  • Tencer, B., Bettolli, M.L., Rusticucci, M., Compound temperature and precipitation extreme events in southern South America: associated atmospheric circulation, and simulations by a multi-RCM ensemble (2016) Clim. Res., 68, pp. 183-199. , https://doi.org/10.3354/cr01396
  • Urrutia, R., Vuille, M., Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century (2009) J. Geophys. Res., 114, p. D02108. , https://doi.org/10.1029/2008JD011021
  • Vargas, W., Penalba, O., Minetti, J., Las precipitaciones mensuales en zonas de la Argentina y el ENOS. Un enfoque hacia problemas de decisión (1999) Meteorológica, 24, pp. 3-22
  • Wang, H., Fu, R., Influence of cross-Andes flow on the South American low-level jet (2004) J. Clim., 17, pp. 1247-1262. , https://doi.org/10.1175/1520-7200442(2004)017<1247:IOCFOT>2.0.CO;2

Citas:

---------- APA ----------
Collazo, S., Lhotka, O., Rusticucci, M. & Kyselý, J. (2018) . Capability of the SMHI-RCA4 RCM driven by the ERA-Interim reanalysis to simulate heat waves in Argentina. International Journal of Climatology, 38(1), 483-496.
http://dx.doi.org/10.1002/joc.5190
---------- CHICAGO ----------
Collazo, S., Lhotka, O., Rusticucci, M., Kyselý, J. "Capability of the SMHI-RCA4 RCM driven by the ERA-Interim reanalysis to simulate heat waves in Argentina" . International Journal of Climatology 38, no. 1 (2018) : 483-496.
http://dx.doi.org/10.1002/joc.5190
---------- MLA ----------
Collazo, S., Lhotka, O., Rusticucci, M., Kyselý, J. "Capability of the SMHI-RCA4 RCM driven by the ERA-Interim reanalysis to simulate heat waves in Argentina" . International Journal of Climatology, vol. 38, no. 1, 2018, pp. 483-496.
http://dx.doi.org/10.1002/joc.5190
---------- VANCOUVER ----------
Collazo, S., Lhotka, O., Rusticucci, M., Kyselý, J. Capability of the SMHI-RCA4 RCM driven by the ERA-Interim reanalysis to simulate heat waves in Argentina. Int. J. Climatol. 2018;38(1):483-496.
http://dx.doi.org/10.1002/joc.5190