Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Global climate models (GCMs) have, in general, problems representing precipitation over southern southeastern South America (SSESA), namely southern Brazil, Uruguay and eastern Argentina. In this study, 18 models were selected from the Coupled Model Inter-comparison Project Phase 5 to evaluate rainfall of the warm semester (October–March) when most of the rain takes place. Though GCMs reproduce the main features of the two main low-level circulation variability modes over southeastern South America, east of the Andes, particularly the two flow patterns associated with the active and weak SACZ, most of them underestimate the northern flow that brings water vapour into SSESA, as well as the mean precipitation in this region. According to an index that stands for the northern flow towards SSESA, all models, except one, have lower northern flow into SSESA than the observed reanalysis field. In addition, this index has a significant correlation across GCMs with mean SSESA precipitation, indicating that lower northern flow into SSESA is generally associated with a greater underestimation in the model precipitation. Hence, it is concluded that the weaker northern flow into SSESA simulated by most GCMs is a cause of their simulated lower precipitation in this region. © 2018 Royal Meteorological Society

Registro:

Documento: Artículo
Título:Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America
Autor:Barros, V.R.; Doyle, M.E.
Filiación:Centro de Investigaciones del Mar y la Atmósfera (CIMA, CONICET-UBA-UMIIFAECI), Departamento de Ciencias de la Atmósfera y los Océanos – Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:CMIP5; precipitation; principal component analysis; SESA; stream function; Precipitation (chemical); Principal component analysis; Rain; CMIP5; Coupled modeling; Global climate model; Mean precipitation; SESA; Southeastern South America; Southern Brazil; Streamfunctions; Climate models; atmospheric general circulation model; CMIP; precipitation (climatology); principal component analysis; rainfall; Andes; Argentina; Brazil; Uruguay
Año:2018
Volumen:38
Número:15
Página de inicio:5476
Página de fin:5490
DOI: http://dx.doi.org/10.1002/joc.5740
Título revista:International Journal of Climatology
Título revista abreviado:Int. J. Climatol.
ISSN:08998418
CODEN:IJCLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v38_n15_p5476_Barros

Referencias:

  • Barros, V., Doyle, M., González, M., Camilloni, I., Bejarán, R., Caffera, R., Climate variability over subtropical South America and the South American Monsoon: a review (2003) Meteorologica, 27, pp. 34-58
  • Barros, V., Doyle, M., Camilloni, I., Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation (2008) Theoretical and Applied Climatology, 93, pp. 19-33. , https://doi.org/10.1007/s00704-007-0329-x
  • Biasutti, M., Sobel, A., Kushnir, Y., AGCM precipitation biases in the Tropical Atlantic (2006) Journal of Climate, 19, pp. 935-957. , https://doi.org/10.1175/JCLI3673.1
  • Blazquez, J., Nuñez, M., Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models (2013) Climate Dynamics, 41, pp. 1039-1056. , https://doi.org/10.1007/s00382-012-1489-7
  • Boers, N., Rheinwalt, A., Bookhagen, B., Barbosa, H.M.J., Marwan, N., Marengo, J., Kurths, J., The South American rainfall dipole: a complex network analysis of extreme events (2014) Geophysical Research Letters, 41, pp. 7397-7405. , https://doi.org/10.1002/2014GL061829
  • Bombardi, R.J., Carvalho, L.M.V., The South Atlantic dipole and variations in the characteristics of the South American Monsoon in the WCRP-CMIP3 multi-model simulations (2011) Climate Dynamics, 36, pp. 2091-2102. , https://doi.org/10.1007/s00382-010-0836-9
  • Boulanger, J.-P., Martinez, F., Segura, E.C., Projection of future climate change conditions using IPCC simulations, neural net- works and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America (2007) Climate Dynamics, 28, pp. 255-271. , https://doi.org/10.1007/s00382-006-0182-0
  • Brown, J.R., Moise, A.F., Colman, R.A., The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate (2013) Climate Dynamics, 41, pp. 2179-2197. , https://doi.org/10.1007/s00382-012-1591-x
  • Camilloni, I., Doyle, M., Barros, V., (2004) Interannual Variability of the South Atlantic High and Rainfall in Southeastern South America During Summer Months, , Fortaleza, Brazil, XIII Congresso Brasileiro de Meteorologia
  • Carvalho, L.M.V., Jones, C., Liebmann, B., The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interanual activity and extreme rainfall (2004) Journal of Climate, 17, pp. 88-108
  • Catto, J.L., Shaffrey, L.C., Hodges, K.I., Can climate models capture the structure of extratropical cyclones? (2010) Journal of Climate, 23, pp. 1621-1635
  • Catto, J.L., Jakob, C., Berry, G., Nicholls, N., Relating global precipitation to atmospheric fronts (2012) Geophysical Research Letters, 39. , https://doi.org/10.1029/2012GL051736, L10805
  • Catto, J.L., Jakob, C., Nicholls, N., A global evaluation of fronts and precipitation in the ACCESS model (2013) Australian Meteorological Oceanographic Society Journal, 63, pp. 191-203
  • Chou, S.C., Lyra, A., Mourao, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamente, J., Marengo, J., Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios (2014) American Journal of Climate Change, 3, pp. 512-527. , https://doi.org/10.4236/ajcc.2014.35043
  • Cressie, N.A.C., (1991) Statistics for Spatial Data, p. 900. , New York, John Wiley and Sons, p
  • Da Silva, A., (2007), http://opengrads.org/doc/udxt/fish/fish.html, . GrADS Extension Library for Calculating Streamfunction/Velocity Potential. Availabel at; Dai, A., Precipitation characteristics in eighteen coupled climate models (2006) Journal of Climate, 19, pp. 4605-4630. , https://doi.org/10.1175/JCLI3884.1
  • Davey, M., Huddleston, M., Sperber, K., STOIC: a study of coupled model climatology and variability in the tropical ocean regions (2002) Climate Dynamics, 18, pp. 403-420. , https://doi.org/10.1007/s00382-001-0188-6
  • Delworth, T.L., Rosati, A., Anderson, W., Adcroft, A.J., Balaji, V., Benson, R., Dixon, K., Zhang, R., Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model (2012) Journal of Climate, 25, pp. 2755-2781. , https://doi.org/10.1175/JCLI-D-11-00316.1
  • Demory, M.E., Vidale, P.L., Roberts, M.J., Berrisford, P., Strachan, J., Schiemann, R., Mizielinski, M.S., The role of horizontal resolution in simulating drivers of the global hydrological cycle (2014) Climate Dynamics., 42, pp. 2201-2225. , https://doi.org/10.1007/s00382-013-1924-4
  • Doyle, M.E., Barros, V.R., Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic (2002) Journal of Climate, 15, pp. 3394-3410. , https://doi.org/10.1175/1520-0442(2002)015<3394:MLLCAP>2.0.CO;2
  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Rummukainen, M., Evaluation of climate models (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, , Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., (Eds.), Cambridge, UK and New York, NY, Cambridge University Press
  • Gandú, A.W., Silva Días, P.L., Impact of tropical heat sources on the South American tropospheric circulation and subsidence (1998) Journal of Geophysical Research, 103, pp. 6001-6015. , https://doi.org/10.1029/97JD03114
  • Geil, K.L., Serra, Y.L., Zeng, X., Assessment of CMIP5 model simulations of the north American monsoon system (2013) Journal of Climate, 26, pp. 8787-8801. , https://doi.org/10.1175/JCLI-D-13-00044.1
  • Grimm, A.M., Barros, V.R., Doyle, M.E., Climate variability in southern South America associated with El Niño and La Niña Events (2000) Journal of Climate, 13, pp. 35-58. , https://doi.org/10.1175/1520-0442(2000)013<0035:CVISSA>2.0.CO;2
  • Gulizia, C., Camilloni, I., Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America (2015) International Journal of Climatology, 35, pp. 583-595. , https://doi.org/10.1002/joc.4005
  • Gulizia, C., Camilloni, I., Doyle, M., Identification of the principal patterns of summer moisture transport in South America and their representation by WCRP/CMIP3 global climate models (2013) Theoretical and Applied Climatology., 112, pp. 227-241. , https://doi.org/10.1007/s00704-012-0729-4
  • Hu, Y., Fu, Q., Observed poleward expansion of the Hadley circulation since 1979 (2007) Atmospheric Chemistry and Physics, 7, pp. 5229-5236
  • (2007) Climate Change. The Scientific Basis, , Geneva, Switzerland, Cambridge University Press
  • Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Midgley, P.M., Climate change 2013: the physical science basis (2013) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, p. 1535. , (Eds.), Cambridge, UK and New York, NY, Cambridge University Press, p
  • Jones, C., Carvalho, L., Climate change in the south American monsoon system: present climate and CMIP5 projections (2013) Journal of Climate, 26, pp. 6660-6678. , https://doi.org/10.1175/JCLI-D-12-00532.1
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Joseph, D., The NCEP/NCAR 40-year reanalysis project (1996) Bulletin of the American Meteorological Society, 77, pp. 437-471. , https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  • Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.H.A., Havlin, S., Bunde, A., Detecting long-range correlations with detrended fluctuation analysis (2001) Physica A, 295, pp. 441-454. , https://doi.org/10.1016/S0378-4371(01)00144-3
  • Kistler, R., The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation (2001) Bulletin of the American Meteorological Society, 82, pp. 247-267. , https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  • Labraga, J.C., Scian, B., Frumento, O., Anomalies in the atmospheric circulation associated with the rainfall excess or déficit in the Pampa Region in Argentina (2002) Journal of Geophysical Research, 107 (D23), pp. 215-4666. , https://doi.org/10.1029/2002JD002113
  • Lawrimore, J.H., Menne, M.J., Gleason, B.E., Williams, C.N., Wuertz, D.B., Vose, R.S., Rennie, J., An overview of the global historical climatology network monthly mean temperature data set, version 3 (2011) Journal of Geophysical Research, 116. , https://doi.org/10.1029/2011JD016187, D19121
  • Lee, J.-Y., Wang, B., Future change of global monsoon in the CMIP5 (2014) Climate Dynamics, 42, pp. 101-119. , https://doi.org/10.1007/s00382-012-1564-0
  • Levang, S.J., Schmitt, R.W., Centennial changes of the global water cycle in CMIP5 models (2015) Journal of Climate, 28, pp. 6489-6502. , https://doi.org/10.1175/JCLI-D-15-0143.1
  • Liebmann, B., Vera, C.S., Carvalho, L.M.V., Camilloni, I.A., Hoerling, M.P., Allured, D., Barros, V.R., Bidegain, M., An observed trend in central south American precipitation (2004) Journal of Climate, 17, pp. 4357-4367
  • Marengo, J.A., Liebmann, B., Grimm, A.M., Misra, V., Silva Dias, P.L., Cavalcanti, I.F.A., Carvalho, L.M.V., Alves, L.M., Recent developments on the south American monsoon system (2012) International Journal of Climatology, 32, pp. 1-21. , https://doi.org/10.1002/joc.2254
  • Mehran, A., AghaKouchak, A., Phillips, T.J., Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations (2014) Journal of Geophysical Research Atmospheres, 119, pp. 1695-1707. , https://doi.org/10.1002/2013JD021152
  • Mo, K.C., Berbery, E.H., Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments (2011) Journal of Climate, 24, pp. 1801-1820. , https://doi.org/10.1175/2010JCLI3874.1
  • Neale, R.B., Richter, J.H., Jochum, M., The impact of convection on ENSO: from a delayed oscillator to a series of events (2008) Journal of Climate, 21, pp. 5904-5924
  • Nogués-Paegle, J., Mo, K.C., Alternating wet and dry conditions over South America during summer (1997) Monthly Weather Review, 125, pp. 279-291. , https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2
  • Penalba, O., Vargas, W.M., Variability of low monthly rainfall in La Plata Basin (2008) Meteorological Applications, 15, pp. 313-323. , https://doi.org/10.1002/met.68
  • Pfahl, S., Wernli, H., Quantifying the relevance of cyclones for precipitation extremes (2012) Journal of Climate, 25, pp. 6770-6780. , https://doi.org/10.1175/JCLI-D-11-00705.1
  • Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.-W., Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the southern hemisphere (2011) Journal of Climate, 24, pp. 795-811. , https://doi.org/10.1175/2010JCLI3772.1
  • Rencher, A.C., (1998) Multivariate Statistical Inference and Applications, p. 559. , New York, NY, John Wiley and Sons Inc., p
  • Richman, M.B., Rotation of principal components: a review (1986) International Journal of Climatology, 6, pp. 293-336. , https://doi.org/10.1002/joc.3370060305
  • Richter, I., Xie, S.P., Moisture transport from the Atlantic to the Pacific basin and its response to North Atlantic cooling and global warming (2010) Climate Dynamics, 35, pp. 551-566. , https://doi.org/10.1007/s00382-009-0708-3
  • Sakaguchi, K., Zeng, X., Brunke, M.A., Temporal- and spatial-scale dependence of three CMIP3 climate models in simulating the surface temperature trend in the twentieth century (2012) Journal of Climate, 25, pp. 2456-2470. , https://doi.org/10.1175/JCLI-D-11-00106.1
  • Saurral, R.I., Camilloni, I.A., Ambrizzi, T., Links between topography, moisture fluxes pathways and precipitation over South America (2015) Climate Dynamics., 45, pp. 777-789. , https://doi.org/10.1007/s00382-014-2309-z
  • Schmittner, A., Silva, T.A.M., Fraedrich, K., Kirk, E., Lunkeit, F., Effects of mountains and ice sheets on global ocean circulation (2011) Journal of Climate, 24, pp. 2814-2829. , https://doi.org/10.1175/2010JCLI3982.1
  • Seager, R., Naik, N., Baethgen, W., Robertson, A., Kushnir, Y., Nakamura, J., Jurburg, S., Tropical oceanic causes of interannual to multidecadal precipitation variability in Southeast South America over the past century (2010) Journal of Climate, 23, pp. 5517-5539. , https://doi.org/10.1175/2010JCLI3578.1
  • Sillmann, J., Kharin, V.V., Zhang, X., Zwiers, F.W., Climate extreme indices in the CMIP5 multi-model ensemble. Part 1: model evaluation in the present climate (2013) Journal of Geophysical Research, 118 (4). , https://doi.org/10.1002/jgrd.50203, 1716–1733
  • Silva, G.A., Dutra, L.M., daRocha, R.P., Ambrizzi, T., Leiva, É., Preliminary analysis on the global features of the NCEP CFSv2 seasonal hindcasts (2014) Advances in Meteorology, 2014, p. 695067. , https://doi.org/10.1155/2014/695067
  • Silvestri, G., Vera, C., Evaluation of the WCRP-CMIP3 model simulations in the La Plata Basin (2008) Meteorological Applications, 15, pp. 497-502. , https://doi.org/10.1002/met.98
  • Solman, S.A., Nuñez, M.N., Cabre, M.F., Regional climate change experiments over southern South America. I: present climate (2008) Climate Dynamics, 30, pp. 533-552. , https://doi.org/10.1007/s00382-007-0304-3
  • Stephens, G.L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J.-C., Bodas-Salcedo, A., Suzuki, K., Haynes, J., Dreary state of precipitation in global models (2010) Journal of Geophysical Research, 115. , https://doi.org/10.1029/2010JD014532, D24211
  • Stockdale, T., Balmaseda, M., Vidard, A., Tropical Atlantic SST prediction with coupled ocean–atmosphere GCMs (2006) Journal of Climate, 19, pp. 6047-6061. , https://doi.org/10.1175/JCLI3947.1
  • Sun, Y., Solomon, S., Dai, A., Portmann, R.W., How often will it rain? (2007) Journal of Climate, 20, pp. 4801-4818. , https://doi.org/10.1175/JCLI4263.1
  • Taylor, K.E., Summarizing multiple aspects of model performance in a single diagram (2001) Journal of Geophysical Research, 106 (D7), pp. 7183-7192. , https://doi.org/10.1029/2000jd900719
  • Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bulletin of the American Meteorological Society, 93, pp. 485-498. , https://doi.org/10.1175/BAMS-D-11-00094.1
  • Tian, B., Fetzer, E.J., Kahn, B.H., Teixeira, J., Manning, E., Hearty, T., Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology (2013) Journal of Geophysical Research Atmospheres., 118, pp. 114-134. , https://doi.org/10.1029/2012JD018607
  • Vera, C., Silvestri, G., Liebmann, B., González, P., Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models (2006) Geophysical Research Letters, 33, p. L13707. , https://doi.org/10.1029/2006GL025759
  • Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Zhang, C., Toward a unified view of the American monsoon systems (2006) Journal of Climate, 19, pp. 4977-5000. , https://doi.org/10.1175/JCLI3896.1
  • Yin, L., Fu, R., Shevliakova, E., Dickson, R., How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? (2013) Climate Dynamics, 41, pp. 3127-3143. , https://doi.org/10.1007/s00382-012-1582-y
  • Yongyun, H., Ch, Z., Jiping, L., Observational evidence for poleward expansion of the Hadley circulation. Advances y circulation (2011) Advances in Atmospheric Sciences, 28, pp. 33-44. , https://doi.org/10.1007/s00376-010-0032-1
  • Zar, J.H., Spearman rank correlation (2005) Encylopedia for Biostatistics, , https://doi.org/10.1002/0470011815.b2a15150, Armitage, P., Colton, T., (Eds.)
  • Zhou, J., Lau, K.M., Does a monsoon climate exist over South America? (1998) Journal of Climate, 11, pp. 1020-1040

Citas:

---------- APA ----------
Barros, V.R. & Doyle, M.E. (2018) . Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America. International Journal of Climatology, 38(15), 5476-5490.
http://dx.doi.org/10.1002/joc.5740
---------- CHICAGO ----------
Barros, V.R., Doyle, M.E. "Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America" . International Journal of Climatology 38, no. 15 (2018) : 5476-5490.
http://dx.doi.org/10.1002/joc.5740
---------- MLA ----------
Barros, V.R., Doyle, M.E. "Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America" . International Journal of Climatology, vol. 38, no. 15, 2018, pp. 5476-5490.
http://dx.doi.org/10.1002/joc.5740
---------- VANCOUVER ----------
Barros, V.R., Doyle, M.E. Low-level circulation and precipitation simulated by CMIP5 GCMS over southeastern South America. Int. J. Climatol. 2018;38(15):5476-5490.
http://dx.doi.org/10.1002/joc.5740