Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of this study is to assess the ability of Coupled Model Intercomparison Project 5 (CMIP5) models in reproducing the variability and change of the austral summer precipitation observed in Southeastern South America (SESA) along the 20th century and beginning of the 21st. Models show a reduction in mean precipitation biases and inter-model dispersion, and a significant improvement in the representation of the leading pattern of precipitation interannual variability (EOF1), in comparison with Coupled Model Intercomparison Project 3 (CMIP3) models. Changes of the EOF1 activity in the present climate, as represented by both, climate model simulations and rainfall gridded datasets, evidence an increase of the frequency of EOF1 positive events (associated with positive precipitation anomalies in SESA and negative ones in the South Atlantic Convergence Zone) and a decrease of the frequency of EOF1 negative events. Nevertheless there are still large uncertainties due to model differences and the internal variability of the climate system. In order to reduce the impact of model uncertainties, an ensemble of the climate simulations that represent better the features associated with EOF1 activity was built, regardless to which model they correspond. The results obtained with this ensemble confirm that largest precipitation trends in SESA are those represented by climate simulations associated with an increase (decrease) of EOF1 positives (negative) events. It was also found that positive precipitation trends in SESA resulted from climate simulations forced by anthropogenic sources are the largest and significantly different from those from simulations forced by natural sources only, which are not significantly different from zero. © 2017 Royal Meteorological Society

Registro:

Documento: Artículo
Título:Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models
Autor:Díaz, L.B.; Vera, C.S.
Filiación:Centro de Investigaciones del Mar y la Atmósfera/CONICET-UBA, DCAO/FCEN, UMI IFAECI/CNRS, Buenos Aires, Argentina
Palabras clave:climate change; interannual variability; precipitation trends; Southeastern South America; Climate change; Precipitation (meteorology); Rain; Uncertainty analysis; Anthropogenic sources; Climate model simulations; Coupled Model Intercomparison Project; Interannual variability; Precipitation anomalies; Precipitation trends; South atlantic convergence zones; Southeastern South America; Climate models; annual variation; climate change; climate modeling; computer simulation; ensemble forecasting; precipitation (climatology); summer; trend analysis; South America
Año:2017
Volumen:37
Página de inicio:681
Página de fin:695
DOI: http://dx.doi.org/10.1002/joc.5031
Título revista:International Journal of Climatology
Título revista abreviado:Int. J. Climatol.
ISSN:08998418
CODEN:IJCLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v37_n_p681_Diaz

Referencias:

  • Barros, V.R., Doyle, M.E., Camilloni, I.A., Precipitation trends in Southeastern South America: relationship with ENSO phases and with low-level circulation (2008) Theor. Appl. Climatol., 93, pp. 19-33
  • Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M., Climate change in Argentina: trends, projections, impacts and adaptation (2015) WIREs Clim. Change, 6, pp. 151-169
  • Carvalho, L.M.V., Jones, C., CMIP5 simulations of low-level tropospheric temperature and moisture over the Tropical Americas (2013) J. Clim., 26, pp. 6257-6286
  • Dai, A., Precipitation characteristics in eighteen coupled climate models (2006) J. Clim., 19, pp. 4605-4630
  • Doyle, M.E., Barros, V.R., Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic (2002) J. Clim., 15, pp. 3394-3410
  • Gonzalez, P.L.M., Polvani, L.M., Seager, R., Correa, G.J.P., Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America (2014) Clim. Dyn., 42, pp. 1775-1792
  • Grimm, A.M., Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change (2011) Stoch. Environ. Res. Risk Asses., 25 (4), pp. 537-554
  • Gulizia, C., Camilloni, I., Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America (2015) Int. J. Climatol., 35, pp. 583-595
  • Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset (2014) Int. J. Climatol., 34, pp. 623-642
  • Hawkins, E., Sutton, R., The potential to narrow uncertainty in regional climate predictions (2009) Bull. Am. Meteorol. Soc., 90, pp. 1095-1107
  • Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Midgley, P.M., Summary for Policymakers (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, , In, (eds)., Cambridge University Press, Cambridge, UK and New York, NY
  • Joetzjer, E., Douville, H., Delire, C., Ciais, P., Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 (2013) Clim. Dyn., 41 (11-12), pp. 2921-2936
  • Jones, C., Carvalho, L.M.V., Climate change in the South American Monsoon system: present climate and CMIP5 projections (2013) J. Clim., 26, pp. 6660-6678
  • Junquas, C., Vera, C.S., Li, L., Le Treut, H., Summer precipitation variability over Southeastern South America in a global warming scenario (2012) Clim. Dyn., 38 (9), pp. 1867-1883
  • Junquas, C., Vera, C.S., Li, L., Le Treut, H., Impact of projected SST changes on summer rainfall in southeastern South America (2013) Clim. Dyn., 40, pp. 1569-1589
  • Knutti, R., The end of model democracy? An editorial comment (2010) Clim. Change, 102, pp. 395-404
  • Liebmann, B., Vera, C.S., Carvalho, L.M.V., Camilloni, I.A., Hoerling, M., Allured, D., Barros, V.R., Bidegain, M., An observed trend in Central South American precipitation (2004) J. Clim., 17, pp. 4357-4367
  • Meehl, G.A., Covey, C., Taylor, K., Delworth, T., Stouffer, R.J., Latif, M., McAvaney, B., Mitchell, J.F.B., THE WCRP CMIP3 multimodel dataset: a new era in climate change research (2007) Bull. Am. Meteorol. Soc., 88, pp. 1383-1394
  • Penalba, O.C., Robledo, F., Spatial and temporal variability of the frequency of extreme daily rainfall regime in the La Plata Basin during the 20th century (2010) Clim. Change, 98, pp. 531-550
  • Re, M., Barros, V.R., Extreme rainfalls in SE South America (2009) Clim. Change, 96 (1-2), pp. 119-136
  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Ziese, M., GPCC full data reanalysis version 6.0 at 2.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data (2011) Global Precipitation Climatology Centre (GPCC), DWD, Internet publication, pp. 1-13. , http://gpcc.dwd.de, (accessed 2 February 2017)
  • Taylor, K., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc., 93, pp. 485-498
  • Vera, C.S., Díaz, L., Anthropogenic influence on summer precipitation trends over South America in CMIP5 models (2015) Int. J. Climatol., 35, pp. 3172-3177
  • Vera, C.S., Silvestri, G., Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset (2009) Clim. Dyn., 32, pp. 1003-1014
  • Vera, C.S., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Zhang, C., A unified view of the American Monsoon Systems (2006) J. Clim., 19, pp. 4977-5000
  • Vera, C.S., Silvestri, G., Liebmann, B., Gonzalez, P., Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models (2006) Geophys. Res. Lett., 33, p. L13707
  • Vera, C.S., Gonzalez, P., Silvestri, G., About uncertainties in WCRP/CMIP3 climate simulations over South America (2009) In, Proceedings of the 9th International Conference on Southern Hemisphere Meteorology and Oceanography, , Melbourne, Australia, 9–13 February 2009
  • Xie, P., Arkin, P.A., Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs (1997) Bull. Am. Meteorol. Soc., 78, pp. 2539-2558
  • Yin, L., Fu, R., Shevliakova, E., Dickinson, R.E., How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? (2013) Clim. Dyn., 41 (11-12), pp. 3127-3143
  • Zak, M., Cabido, M., Cáceres, D., Díaz, S., What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors (2008) Environ. Manage., 42, pp. 181-189

Citas:

---------- APA ----------
Díaz, L.B. & Vera, C.S. (2017) . Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models. International Journal of Climatology, 37, 681-695.
http://dx.doi.org/10.1002/joc.5031
---------- CHICAGO ----------
Díaz, L.B., Vera, C.S. "Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models" . International Journal of Climatology 37 (2017) : 681-695.
http://dx.doi.org/10.1002/joc.5031
---------- MLA ----------
Díaz, L.B., Vera, C.S. "Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models" . International Journal of Climatology, vol. 37, 2017, pp. 681-695.
http://dx.doi.org/10.1002/joc.5031
---------- VANCOUVER ----------
Díaz, L.B., Vera, C.S. Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models. Int. J. Climatol. 2017;37:681-695.
http://dx.doi.org/10.1002/joc.5031