Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is growing evidence of significant changes in components of the Antarctic climate system, an important issue given the influence Antarctica has on global climate. It is important to infer to what extent these regional changes could be attributed to human-induced processes and to what extent to natural variability. Standard methods such as linear trend estimates or piecewise linear trends can be inadequate because they may result in erratic, non-systematic results, particularly if different scales of variability are present in each record and various records are to be compared. The Orcadas Antarctic Station (Argentina), with daily surface meteorological observations since April 1903, provides Antarctica's longest observational record. This study analyses the Orcadas seasonal surface temperature variability. Multidecadal variability and short-term trends are studied to provide an improved assessment of climate evolution and necessary information for the determination of mechanisms driving regional/local change. A combined method using wavelet transform (WT), non-linear statistical model approaches and derivative of fits is developed. This methodology is also applied for validation and comparison to the Gomez ice core oxygen isotope record for the 1857-2006 and 1903-2006 time intervals. Significant quasi 50-year and quasi 20-year variability bands were obtained, both for the quarterly and seasonal Orcadas temperature records, with warming (cooling) periods detected between 1903-1912, 1927-1961 and 1972-2004 (1912-1927 and 1962-1972). If seasons are considered, the only one with a fairly sustained warming is summer, where actual cooling is observed only at the beginning, prior to the early 1930s. Quasi 50-year variability was also detected in the Gomez record. Long periods are obtained in the model fits, longer than the time series, which varied with window length. Although not representing variability cycles, they could represent the best fit of the non-linear, non oscillating asymptotic stationary component of the series, i.e. a non-linear trend. © 2016 Royal Meteorological Society.

Registro:

Documento: Artículo
Título:110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability
Autor:Zitto, M.E.; Barrucand, M.G.; Piotrkowski, R.; Canziani, P.O.
Filiación:Facultad de Ingeniería, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Unidad de Investigación y Desarrollo de las Ingenierías, Facultad Regional Buenos Aires, Universidad Tecnológica Nacional, Ciudad Autónoma de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina
DCAO-FCEyN, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
ECyT, Universidad Nacional de San Martín, San Martín, Prov. de Buenos Aires, Argentina
Palabras clave:Antarctica; Climate change; Multidecadal variability; Surface temperature; Temperature trend; Wavelet transform; Atmospheric temperature; Isotopes; Mathematical transformations; Piecewise linear techniques; Surface properties; Wavelet transforms; Antarctica; Meteorological observation; Multidecadal variability; Oxygen isotope records; Seasonal surface temperature; Surface temperatures; Temperature observations; Temperature trends; Climate change; climate change; cooling; decadal variation; global climate; regional climate; surface temperature; Argentina
Año:2016
Volumen:36
Número:2
Página de inicio:809
Página de fin:823
DOI: http://dx.doi.org/10.1002/joc.4384
Título revista:International Journal of Climatology
Título revista abreviado:Int. J. Climatol.
ISSN:08998418
CODEN:IJCLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v36_n2_p809_Zitto

Referencias:

  • Agosta, E., The 18.6-year nodal tidal cycle and the bi-decadal precipitation oscillation over the plains to the east of subtropical Andes, South America (2014) Int. J. Climatol., 34, pp. 1606-1614
  • Barrucand, M., Rusticucci, M., Vargas, W., Temperature extremes in the south of South America in relation to Atlantic Ocean surface temperature and Southern Hemisphere circulation (2008) J. Geophys. Res., 113, p. D20111
  • Bates, D.M., Watts, D.G., (1988) Nonlinear Regression Analysis and Its Applications, , John Wiley and Sons: New York, NY
  • Canziani, P.O., O'Neill, A., Schofield, R., Raphael, M., Marshall, G.J., Redaelli, G., World Climate Research Programme Special Workshop on climatic effects of ozone depletion in the Southern Hemisphere (2014) Bull. Am. Meteorol. Soc., 95, pp. ES101-ES105
  • Chapman, W., Walsh, J., A synthesis of Antarctic temperatures (2007) J. Clim., 20, pp. 4096-4117
  • Chylek, P., Folland, C.K., Dijkstra, H.A., Lesins, G., Dubey, M.K., Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation (2011) Geophys. Res. Lett., 38, p. L13704
  • Compagnucci, R.H., Salles, M.A., Canziani, P.O., The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view. Part I: methodology and temporal behaviour (2001) Int. J. Climatol., 21, pp. 419-437
  • Ebbesmeyer, C.C., Cayan, D.R., McLain, D.R., Nichols, F.H., Peterson, D.H., Redmond, K.T., 1976 step in the Pacific climate: forty environmental changes between 1968-75 and 1977-1984. (1991) In Proceedings of 7th Annual Pacific Climate Workshop, Asilomar, CA, Interagency Ecological Studies Program Technical Report No. 26, , Betancourt JL, Tharp VL (eds). California Department of Water Resources: Sacramento, CA, 115-126
  • Gu, D., Philander, S.G.H., Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics (1997) Science, 275, pp. 805-807
  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zhen, Q., Yen, N.-C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for non linear and non-stationary time series analysis (1998) Proc. R. Soc. Lond. A, 454, pp. 903-995
  • (2004) Statistical Tools for Nonlinear Regression: A Practical Guide With S-PLUS and R Examples, , Huet S (ed). Springer Science & Business Media: New York, NY
  • (2013) Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, , Cambridge University Press: New York, NY
  • Jevrejeva, S., Moore, J.C., Grinsted, A., Influence of the Arctic Oscillation and El Niño-Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach (2003) J. Geophys. Res., 108, p. 4677
  • Karhunen, K., Überlineare Methoden in der Wahrscheinlichkeitsrechnung (1947) Ann. Acad. Sci. Fennicae. Ser. A. I. Math. Phys., 37, pp. 1-79
  • Karoly, D.J., Wu, Q., Detection of regional surface temperature trends (2005) J. Clim., 18, pp. 4337-4343
  • King, J.C., Turner, J., Marshall, G.J., Connolley, W.M., Lachlan-Cope, T.A., Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records (2003) Antarctic Res. Ser., 79, pp. 17-30
  • Kumar, P., Foufoula-Georgiou, E., Wavelet analysis for geophysical applications (1997) Rev. Geophys., 35 (4), pp. 385-412
  • Lanzante, J.R., Klein, S.A., Seidel, D.J., Temporal homogenization of monthly radiosonde temperature data. Part II: trends, sensitivities and MSU comparisons (2003) J. Clim., 16, pp. 241-262
  • Latif, M., Martin, T., Park, W., Southern ocean sector centennial climate variability and recent decadal trends (2013) J. Clim., 26 (19), pp. 7767-7782
  • Legnani, W., Canziani, P., Barletta, J., Gil, G., Ibañez, F., 100 years of surface weather observations at Orcadas Antarctic Station: a look at variability and change in the Antarctic Peninsula. (2006) In Proceedings of the 8th International Conference on Southern Hemisphere Meteorology and Oceanography, , INPE, Foz do Iguazu, Brazil, 24-28 April, 195-199
  • Loève, M., (1978) Probability Theory, 2. , Graduate Texts in Mathematics 46, 4th edn. Springer-Verlag: New York, NY
  • Malanca, F.E., Canziani, P.O., Argüello, G., Trends evolution of ozone between 1980 and 2000 at mid-latitudes over the Southern Hemisphere: decadal differences in trends (2005) J. Geophys. Res., 110, p. D05102
  • Mallat, S., (2008) A Wavelet Tour of Signal Processing: The Sparse Way, , 3rd edn. Academic Press: New York, NY
  • Marshall, G.J., Half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures (2007) Int. J. Climatol., 26, pp. 373-383
  • Marshall, G.J., Orr, A., Turner, J., A predominant reversal in the relationship between the SAM and East Antarctic temperatures during the twenty-first century (2013) J. Clim., 26, pp. 5196-5204
  • Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., Karlén, W., Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data (2005) Nature, 433, pp. 613-617
  • Monaghan, A.J., Bromwich, D.H., Chapman, W., Comiso, J., Recent variability and trends of Antarctic near-surface temperature (2008) J. Geophys. Res., 113, p. D04105
  • O'Donnell, R., Lewis, N., Mcintyre, S., Condon, J., Improved methods for PCA-based reconstructions: case study using the Steig (2009) antarctic temperature reconstruction (2011) J. Clim., 24, pp. 2099-2115
  • Pišoft, P., Kalvová, J., Brázdil, R., Cycles and trends in the Czech temperature series using wavelet transforms (2004) Int. J. Climatol., 24, pp. 1661-1670
  • Salles, M.A., Canziani, P., Compagnucci, R.H., The spatial and temporal behaviour of the lower stratospheric temperature over the Southern Hemisphere: the MSU view. Part II: spatial behaviour (2001) Int. J. Climatol., 21, pp. 439-454
  • Schneider, D., Steig, E., van Ommen, T., Dixon, D., Mayewski, P., Jones, J., Bitz, C., Antarctic temperatures over the past two centuries from ice cores (2006) Geophys. Res. Lett., 33, p. L16707
  • Shindell, D.T., Schmidt, G.A., Southern Hemisphere climate response to ozone changes and greenhouse gas increases (2004) Geophys. Res. Lett., 31, p. L18209
  • Skvarca, P., Rack, W., Rott, H., Ibarzibal y Doningelo, T., Climatic trend and the retreat and disintegration of ice shelves on the Antarctic Peninsula: an overview (1999) Polar Res., 18, pp. 151-157
  • Steig, E.J., Schneider, D., Rutherford, S.D., Mann, M.E., Comiso, J.C., Shindell, D.T., Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year (2009) Nature, 457, pp. 459-462
  • Steig, E., Ding, Q., White, J., Küttel, M., Rupper, S., Neumann, T., Neff, P., Korotkikh, E., Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years (2013) Nat. Geosci., 6, pp. 372-375
  • Thomas, E.R., Marshall, G., McConnell, J.R., A doubling in accumulation in the western Antarctic Peninsula since 1850 (2008) Geophys. Res. Lett., 35, p. L01706
  • Thomas, E.R., Dennis, P., Bracegirdle, T., Franzke, C., Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula (2009) Geophys. Res. Lett., 36, p. L20704
  • Thomas, E., Bracegirdle, T., Turner, J., Wolff, E., A 308 year record of climate variability in West Antarctica (2013) Geophys. Res. Lett., 40, pp. 5492-5496
  • Thompson, D.W.J., Solomon, S., Interpretation of recent Southern Hemisphere climate change (2002) Science, 296, pp. 895-899
  • Thompson, D.W.J., Solomon, S., Kushner, P.J., England, M.H., Grise, K.M., Karoly, D.J., Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change (2011) Nat. Geosci., 4, pp. 741-749
  • Torrence, C., Compo, G., A practical guide to wavelet analysis (1998) Bull. Am. Meteorol. Soc., 79 (1), pp. 61-78
  • Turner, J., Colwell, S., Marshall, G., Lachlan-Cope, T., Carleton, A., Jones, P., Lagun, V., Iagovkina, S., Antarctic climate change during the last 50 years (2005) Int. J. Climatol., 25, pp. 279-294
  • Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., King, J.C., Turner, J., Recent rapid regional climate warming on the Antarctic Peninsula (2003) Clim. Change, 60, pp. 243-274
  • Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Report No. 52 (2011), World Meteorological Organization, Geneva, Switzerland; Zazulie, N., Rusticucci, M., Solomon, S., Changes in climate at high southern latitudes: a unique daily record at Orcadas spanning 1903-2008 (2010) J. Clim., 23, pp. 189-196

Citas:

---------- APA ----------
Zitto, M.E., Barrucand, M.G., Piotrkowski, R. & Canziani, P.O. (2016) . 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability. International Journal of Climatology, 36(2), 809-823.
http://dx.doi.org/10.1002/joc.4384
---------- CHICAGO ----------
Zitto, M.E., Barrucand, M.G., Piotrkowski, R., Canziani, P.O. "110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability" . International Journal of Climatology 36, no. 2 (2016) : 809-823.
http://dx.doi.org/10.1002/joc.4384
---------- MLA ----------
Zitto, M.E., Barrucand, M.G., Piotrkowski, R., Canziani, P.O. "110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability" . International Journal of Climatology, vol. 36, no. 2, 2016, pp. 809-823.
http://dx.doi.org/10.1002/joc.4384
---------- VANCOUVER ----------
Zitto, M.E., Barrucand, M.G., Piotrkowski, R., Canziani, P.O. 110 years of temperature observations at Orcadas Antarctic Station: Multidecadal variability. Int. J. Climatol. 2016;36(2):809-823.
http://dx.doi.org/10.1002/joc.4384