Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of this study is to evaluate the ability of two sets of global climate models (GCMs) derived from the Coupled Model Intercomparison Projects Phase 3 (CMIP3) and Phase 5 (CMIP5) to represent the summer, winter, and annual precipitation mean patterns in South America south of the equator and in three particular sub-regions, between years 1960 and 1999. Different metrics (relative bias, spatial correlation, RMSE, and relative errors) were calculated and compared between both projects to determine if there has been improvement from CMIP3 to CMIP5 models in the representation of regional rainfall. Results from this analysis indicate that for the analysed seasons, precipitation simulated by both CMIP3 and CMIP5 models' ensembles exhibited some differences. In DJF, the relative bias over Amazonia, central South America, eastern Argentina, and Uruguay is reduced in CMIP5 compared with CMIP3. In JJA, the same occurs in some areas of Amazonia. Annual precipitation is also better represented by the CMIP5 than CMIP3 GCMs as they underestimate precipitation to a lesser extent, although in NE Brazil the overestimation values are much larger in CMIP5 than in CMIP3 analysis. In line with previous studies, the multi-model ensembles show the best representation of the observed patterns in most seasons and regions. Only in some cases, single GCMs [MIROC3.2(hires) - CMIP3- and MIROC4h - CMIP5] presented better results than the ensemble. The high horizontal resolution of these models suggests that this could be a relevant issue for a more adequate estimation of rainfall at least in the analysed regions. © 2014 Royal Meteorological Society.

Registro:

Documento: Artículo
Título:Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America
Autor:Gulizia, C.; Camilloni, I.
Filiación:Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
UMI IFAECI/CNRS, Buenos Aires, Argentina
Palabras clave:CMIP3; CMIP5; Evaluation; Global climate models; Precipitation; South America; Precipitation (chemical); Rain; CMIP3; CMIP5; Evaluation; Global climate model; South America; Climate models
Año:2015
Volumen:35
Número:4
Página de inicio:583
Página de fin:595
DOI: http://dx.doi.org/10.1002/joc.4005
Título revista:International Journal of Climatology
Título revista abreviado:Int. J. Climatol.
ISSN:08998418
CODEN:IJCLE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08998418_v35_n4_p583_Gulizia

Referencias:

  • Alves, L.M., Marengo, J., Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America (2010) Theor. Appl. Climatol., 100, pp. 337-350
  • Barros, V.R., Tendencias climáticas e hidrológicas en la cuenca del Plata (2006) El cambio climático en la Cuenca del Plata, pp. 12-18. , In, Barros V, Clarke R, Silva Dias P (eds). CIMA: Buenos Aires, Argentina; - (in Spanish)
  • Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., Woodward, S., Improved representation of aerosols for HadGEM2 (2007), Hadley Centre Technical Note 73. Met Office Hadley Centre: Exeter, UK; Berbery, E.H., Doyle, M., Barros, V., Tendencias regionales en la precipitación (2006) El cambio climático en la Cuenca del Plata, pp. 67-79. , In, Barros V, Clarke R, Silva Dias P (eds). CIMA: Buenos Aires, Argentina; - (in Spanish)
  • Boulanger, J.-P., Martinez, F., Segura, E.C., Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America (2007) Clim. Dyn., 28, pp. 255-271
  • Delworth, T.L., Broccoli, A.J., Rosati, A., Stouffer, R.J., Balaji, V., Beesley, J.A., Cooke, W.F., Zhang, R., GFDL's CM2 global coupled climate models. Part I: formulation and simulation characteristics (2006) J. Clim., 19 (5)
  • Doyle, M., Barros, V., Attribution of the river flow growth in the Plata Basin (2011) Int. J. Climatol., 31, pp. 2234-2248
  • Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Vuichard, N., Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 (2013) Clim. Dyn., 40 (9-10), pp. 2123-2165
  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Rummukainen, M., Evaluation of climate models (2013) Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 741-866. , In, Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press: Cambridge, UK and New York, NY; -
  • Gan, M., Rao, V.B., Moscati, C.L., South American monsoon indices (2006) Atmos. Sci. Lett., 6, pp. 2219-2223
  • Giorgi, F., Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations (2002) Clim. Dyn., 18, pp. 675-691
  • Gleckler, P.J., Taylor, K.E., Doutriaux, C., Performance metrics for climate models (2008) J. Geophys. Res., 113, p. D06104
  • Gulizia, C., Camilloni, I., Doyle, M., Identification of the principal patterns of summer moisture transport in South America and their representation by WCRP/CMIP3 global climate models (2013) Theor. Appl. Climatol., 112, pp. 227-241
  • Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., Updated high-resolution grids of monthly climatic observations (2013) Int. J. Climatol., 34, pp. 623-642
  • Haylock, M.R., Peterson, T.C., Alves, L.M., Ambrizzi, T., Anunciação, Y.M.T., Baez, J., Barros, V.R., Vincent, L.A., Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature (2006) J. Clim., 19, pp. 1490-1512
  • Insel, N., Poulsen, C., Ehlers, T., Influence of the Andes Mountains on South American moisture transport, convection, and precipitation (2010) Clim. Dyn., 35, pp. 1477-1492
  • (2007) Climate Change. The Scientific Basis, , Cambridge University Press: Geneva, Switzerland
  • Joetzjer, E., Douville, H., Delire, C., Ciais, P., Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 (2013) Clim. Dyn., 41 (11-12), pp. 2921-2936
  • Jones, C., Carvalho, L., Climate change in the South American monsoon system: present climate and CMIP5 projections (2013) J. Clim., 26, pp. 6660-6678
  • Knutti, R., Sedláček, J., Robustness and uncertainties in the new CMIP5 climate model projections (2013) Nat. Clim. Change, 3, pp. 369-373
  • Lenters, J.D., Cook, K.H., Simulation and diagnosis of the regional summertime precipitation climatology of South America (1995) J. Clim., 8, pp. 2298-3005
  • Marengo, J.A., Rusticucci, M., Penalba, O., Renom, M., An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: part 2: historical trends (2010) Clim. Change, 98, pp. 509-529
  • Meehl, G.A., Covey, C., Delworth, T.L., Latif, M., McAveney, B., Mitchell, J.F.B., Stouffer, R.J., Taylor, K.E., The WCRP CMIP3 multimodel dataset: a new era in climate change research (2007) Bull. Am. Meteorol. Soc., 88, pp. 1383-1394
  • Pincus, R., Batstone, C.P., Hofmann, R.J.P., Taylor, K.E., Gleckler, P.J., Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models (2008) J. Geophys. Res., 113, p. D14209
  • Popescu, I., Brandimarte, L., Perera, M.S.U., Peviani, M., Assessing residual hydropower potential of the La Plata Basin accounting for future user demands (2012) Hydrol. Earth Syst. Sci., 16, pp. 2813-2823
  • Prohaska, F., The climate of Argentina, Paraguay and Uruguay (1976) Climates of Central and South America. World Survey of Climatology, 12, pp. 13-72. , In, Vol., Schwerdtfeger W (ed). Elsevier: Amsterdam;
  • Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Taylor, K.E., Cilmate models and their evaluation (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, , In, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press: Cambridge, UK and New York, NY
  • Re, M., Barros, V., Extreme rainfalls in SE South America (2009) Clim. Change, 96, pp. 119-136
  • Rusticucci, M., Barrucand, M., Observed trends and changes in temperature extremes over Argentina (2004) J. Clim., 17, pp. 4099-4107
  • Sakaguchi, K., Zeng, X., Brunke, M.A., Temporal- and spatial-scale dependence of three CMIP3 climate models in simulating the surface temperature trend in the twentieth century (2012) J. Clim., 25, pp. 2456-2470
  • Schaller, N., Mahlstein, I., Cermak, J., Knutti, R., Analyzing precipitation projections: a comparison of different approaches to climate model evaluation (2011) J. Geophys. Res., 116, p. D10118
  • Seth, A., Rojas, M., Rauscher, S., CMIP3 projected changes in the annual cycle of the South American Monsoon (2010) Clim. Change, 98, pp. 331-357
  • Silvestri, G., Vera, C., Evaluation of the WCRP-CMIP3 model simulations in the La Plata Basin (2008) Meteorol. Appl., 15, pp. 497-502
  • Stouffer, R.J., Taylor, K.E., Meehl, G.A., CMIP5 long-term experimental design (2011) CLIVAR Exch., 56, pp. 5-7
  • Su, F., Duan, X., Chen, D., Hao, Z., Cuo, L., Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau (2013) J. Clim., 26, pp. 3187-3208
  • Taylor, K.E., Stouffer, R.J., Meehl, G.A., An Overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc., 93, pp. 485-498
  • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawamiya, M., MIROC-ESM: model description and basic results of CMIP5-20c3m experiments (2011) Geosci. Model Dev. Discuss., 4, pp. 1063-1128
  • Wilcox, L.J., Charlton-Perez, A.J., Gray, L.J., Trends in Austral jet position in ensembles of high- and low-top CMIP5 models (2012) J. Geophys. Res., 117, p. D13115
  • Wilks, D., (1995) Statistical Methods in the Atmospheric Sciences, pp. 24-25. , Academic Press: San Diego, CA
  • Willmott, C., Matsuura, K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance (2005) Clim. Res., 30, pp. 79-82
  • Yin, L., Fu, R., Shevliakova, E., Dickinson, R., How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? (2012) Clim. Dyn., 41 (11-12), pp. 3127-3143

Citas:

---------- APA ----------
Gulizia, C. & Camilloni, I. (2015) . Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583-595.
http://dx.doi.org/10.1002/joc.4005
---------- CHICAGO ----------
Gulizia, C., Camilloni, I. "Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America" . International Journal of Climatology 35, no. 4 (2015) : 583-595.
http://dx.doi.org/10.1002/joc.4005
---------- MLA ----------
Gulizia, C., Camilloni, I. "Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America" . International Journal of Climatology, vol. 35, no. 4, 2015, pp. 583-595.
http://dx.doi.org/10.1002/joc.4005
---------- VANCOUVER ----------
Gulizia, C., Camilloni, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol. 2015;35(4):583-595.
http://dx.doi.org/10.1002/joc.4005