Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Free-standing macroporous bioglass scaffolds were prepared by a sol-gel route. The ice-segregation-induced self-assembly method was employed to structure a bioglass aqueous sol in the form of green monoliths with a well-defined macroporosity. The achieved texture was essentially preserved after a mild annealing at 873 K. The texture can be properly tuned by typical variables such as the freezing rate or sol concentration. In addition to these physical preparative variables, the acidity level plays a key role in preventing the silica condensation, keeping the primary building units in the early stages of the sol-gel transition and allowing the obtainment of large macropores. The chemical homogeneity of the resulting bioglass was enough to ensure a proper in vitro biomineralization response, resulting in a well-distributed hydroxyaopatite-like nanoparticulated layer. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying
Autor:Minaberry, Y.; Jobbágy, M.
Filiación:INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Argentina
Centro Interdisciplinario de Nanociencia y Nanotecnología, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Palabras clave:biomineralization; glasses; porous materials; sol-gel; Bio-glass; Building units; Chemical homogeneity; Freeze drying; Freezing rate; In-vitro; Macro-porosity; Macropores; Macroporous bioglass; Self-assembly method; Silica condensation; Sol concentration; Sol-gel routes; Sol-gel transitions; Acidity; Biomineralization; Gels; Glass; Ocean habitats; Phase transitions; Porous materials; Scaffolds; Silica; Sol-gel process; Sol-gels; Textures; Sols
Año:2011
Volumen:23
Número:9
Página de inicio:2327
Página de fin:2332
DOI: http://dx.doi.org/10.1021/cm103362c
Título revista:Chemistry of Materials
Título revista abreviado:Chem. Mater.
ISSN:08974756
CODEN:CMATE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08974756_v23_n9_p2327_Minaberry

Referencias:

  • Hench, L.L., The story of Bioglass (R) (2006) J. Mater. Sci.: Mater. Med., 17 (11), pp. 967-978
  • Arcos, D., Vallet-Regí, M., Sol-gel silica-based biomaterials and bone tissue regeneration (2010) Acta Biomater., 6 (8), pp. 2874-2888
  • Day, R.M., Boccaccini, A.R., Shurey, S., Roether, J.A., Forbes, A., Hench, L.L., Gabe, S.M., Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds (2004) Biomaterials, 25 (27), pp. 5857-5866. , DOI 10.1016/j.biomaterials.2004.01.043, PII S0142961204000845
  • Day, R.M., Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro (2005) Tissue Engineering, 11 (5-6), pp. 768-777. , DOI 10.1089/ten.2005.11.768
  • Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., Polak, J.M., Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution (2001) Journal of Biomedical Materials Research, 55 (2), pp. 151-157. , DOI 10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D
  • Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L., Polak, J.M., Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering (2000) Calcif. Tissue Int., 67 (4), pp. 321-329
  • Roether, J.A., Boccaccini, A.R., Hench, L.L., Maquet, V., Gautier, S., Jerome, R., Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications (2002) Biomaterials, 23 (18), pp. 3871-3878. , DOI 10.1016/S0142-9612(02)00131-X, PII S014296120200131X
  • Gutierrez, M.C., Jobbagy, M., Ferrer, M.L., Del Monte, F., Enzymatic synthesis of amorphous calcium phosphate-chitosan nanocomposites and their processing into hierarchical structures (2008) Chemistry of Materials, 20 (1), pp. 11-13. , DOI 10.1021/cm7020164
  • Jones, J.R., Ehrenfried, L.M., Hench, L.L., Optimising bioactive glass scaffolds for bone tissue engineering (2006) Biomaterials, 27 (7), pp. 964-973. , DOI 10.1016/j.biomaterials.2005.07.017, PII S0142961205006319
  • Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of Apatite Formation on CaO-SiO 2-P 2O 5 Glasses in a Simulated Body Fluid (1992) J. Non-Cryst. Solids, 143 (1), pp. 84-92
  • Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering (2006) Biomaterials, 27 (18), pp. 3413-3431
  • Kokubo, T., Kim, H.-M., Kawashita, M., Novel bioactive materials with different mechanical properties (2003) Biomaterials, 24 (13), pp. 2161-2175. , DOI 10.1016/S0142-9612(03)00044-9
  • Hall, S.R., Walsh, D., Green, D., Oreffo, R., Mann, S., A novel route to highly porous bioactive silica gels (2003) J. Mater. Chem., 13 (2), pp. 186-190
  • Qian, J.M., Kang, Y.H., Wei, Z.L., Zhang, W., Fabrication and characterization of biomorphic 45S5 bioglass scaffold from sugarcane (2009) Mater. Sci. Eng. C: Biomim. Supramol. Syst., 29 (4), pp. 1361-1364
  • Kim, H.-W., Kim, H.-E., Knowles, J.C., Production and potential of bioactive glass nanofibers as a next-generation biomaterial (2006) Advanced Functional Materials, 16 (12), pp. 1529-1535. , DOI 10.1002/adfm.200500750
  • Yun, H.S., Kim, S.E., Hyun, Y.T., Heo, S.J., Shin, J.W., Three-dimensional mesoporous-giantporous inorganic/organic composite scaffolds for tissue engineering (2007) Chem. Mater., 19 (26), pp. 6363-6366
  • Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions. Part I: Initial instants (2009) J. Am. Ceram. Soc., 92 (11), pp. 2489-2496
  • Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., In Situ X-Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particles Suspensions. Part II: Steady State (2009) J. Am. Ceram. Soc., 92 (11), pp. 2497-2503
  • Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., Metastable and unstable cellular solidification of colloidal suspensions (2009) Nat. Mater., 8 (12), pp. 966-972
  • Mukai, S.R., Nishihara, H., Tamon, H., Morphology maps of ice-templated silica gels derived from silica hydrogels and hydrosols (2008) Microporous Mesoporous Mater., 116 (1-3), pp. 166-170
  • Nishihara, H., Iwamura, S., Kyotani, T., Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template (2008) J. Mater. Chem., 18 (31), pp. 3662-3670
  • Deville, S., Freeze-casting of porous ceramics: A review of current achievements and issues (2008) Advanced Engineering Materials, 10 (3), pp. 155-169. , DOI 10.1002/adem.200700270
  • Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., In Situ X-Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particle Suspensions. Part I: Initial Instants (2009) J. Am. Ceram. Soc., 92 (11), pp. 2489-2496
  • Gutierrez, M.C., Garcia-Carvajal, Z.Y., Jobbagy, M., Yuste, L., Rojo, F., Abrusci, C., Catalina, F., Ferrer, M.L., Hydrogel scaffolds with immobilized bacteria for 3D cultures (2007) Chemistry of Materials, 19 (8), pp. 1968-1973. , DOI 10.1021/cm062882s
  • Gutierrez, M.C., Garcia-Carvajal, Z.Y., Hortiguela, M.J., Yuste, L., Rojo, F., Ferrer, M.L., Del Monte, F., Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli (2007) Journal of Materials Chemistry, 17 (29), pp. 2992-2995. , DOI 10.1039/b707504a
  • Gutierrez, M.C., Ferrer, M.L., Del Monte, F., Ice-templated materials: Sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation- induced self-assembly (2008) Chemistry of Materials, 20 (3), pp. 634-648. , DOI 10.1021/cm702028z
  • Yan, X.X., Yu, C.Z., Zhou, X.F., Tang, J.W., Zhao, D.Y., Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities (2004) Angew. Chem., Int. Ed., 43 (44), pp. 5980-5984
  • Lopez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Sakamoto, Y., Terasaki, O., Vallet-Regi, M., Ordered mesoporous bioactive glasses for bone tissue regeneration (2006) Chemistry of Materials, 18 (13), pp. 3137-3144. , DOI 10.1021/cm060488o
  • Arcos, D., Lopez-Noriega, A., Ruiz-Hernandez, E., Terasaki, O., Vallet-Regi, M., Ordered Mesoporous Microspheres for Bone Grafting and Drug Delivery (2009) Chem. Mater., 21 (6), pp. 1000-1009
  • Ostomel, T.A., Shi, Q., Tsung, C.-K., Liang, H., Stucky, G.D., Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity (2006) Small, 2 (11), pp. 1261-1265. , DOI 10.1002/smll.200600177
  • Boccaccini, A.R., Chen, Q., Lefebvre, L., Gremillard, L., Chevalier, J., Sintering, crystallisation and biodegradation behaviour of Bioglass (R)-derived glass-ceramics (2007) Faraday Discuss., 136, pp. 27-44
  • Kokubo, T., Takadama, H., How useful is SBF in predicting in vivo bone bioactivity? (2006) Biomaterials, 27 (15), pp. 2907-2915. , DOI 10.1016/j.biomaterials.2006.01.017, PII S0142961206000457
  • Ohtsuki, C., Kokubo, T., Takatsuka, K., Yamamuro, T., Compositional dependence of bioactivity of glasses in the system CaO-SiO 2-P 2O 5. Its in vitro evaluation (1991) J. Ceram. Soc. Jpn., Int. Ed., 99 (1), pp. 2-7
  • Deville, S., Saiz, E., Tomsia, A.P., Ice-templated porous alumina structures (2007) Acta Mater., 55 (6), pp. 1965-1974
  • Gutierrez, M.C., Garcia-Carvajal, Z.Y., Jobbagy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M.L., Del Monte, F., Poly(vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release (2007) Advanced Functional Materials, 17 (17), pp. 3505-3513. , DOI 10.1002/adfm.200700093
  • Nishihara, H., Mukai, S.R., Yamashita, D., Tamon, H., Ordered macroporous silica by ice templating (2005) Chemistry of Materials, 17 (3), pp. 683-689. , DOI 10.1021/cm048725f
  • Arcos, D., Greenspan, D.C., Vallet-Regã, M., Influence of the stabilization temperature on textural and structural features and ion release in SiO 2-CaO-P 2O 5 sol-gel glasses (2002) Chem. Mater., 14 (4), pp. 1515-1522
  • Hortiguela, M.J., Gutierrez, M.C., Aranaz, I., Jobbagy, M., Abarrategi, A., Moreno-Vicente, C., Civantos, A., Del Monte, F., Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds (2008) J. Mater. Chem., 18 (48), pp. 5933-5940
  • Brinker, C.J., Scherrer, G.W., (1990) Sol-Gel Science, , Gulf Professional Publishing: Houston, TX
  • Pereira, M.M., Clark, A.E., Hench, L.L., Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro (1994) Journal of Biomedical Materials Research, 28 (6), pp. 693-698
  • Fowler, B.O., Infrared Studies of Apatites. 2. Preparation of Normal and Isotopically Substituted Calcium, Strontium, and Barium Hydroxyapatites and Spectra-Structure-Composition Correlations (1974) Inorg. Chem., 13 (1), pp. 207-214
  • Fowler, B.O., Infrared Studies of Apatites. 1. Vibrational Assignments for Calcium, Strontium, and Barium Hydroxyapatites Utilizing Isotopic-Substitution (1974) Inorg. Chem., 13 (1), pp. 194-207
  • Ohtsuki, C., Kokubo, T., Yamamuro, T., Mechanism of apatite formation on CaO-SiO 2-P 2O 5 glasses in a simulated body fluid (1992) J. Non-Cryst. Solids, 143 (C), pp. 84-92
  • Andersson, J., Johannessen, E., Areva, S., Baccile, N., Azais, T., Linden, M., Physical properties and in vitro bioactivity of hierarchical porous silica-HAP composites (2007) Journal of Materials Chemistry, 17 (5), pp. 463-468. , DOI 10.1039/b611999a
  • Lao, J., Nedelec, J.M., Jallot, E., New insight into the physicochemistry at the interface between sol-gel-derived bioactive glasses and biological medium: A PIXE-RBS study (2008) J. Phys. Chem. C, 112 (25), pp. 9418-9427
  • Lopez-Noriega, A., Arcos, D., Izquierdo-Barba, I., Sakamoto, Y., Terasaki, O., Vallet-Regi, M., Ordered mesoporous bioactive glasses for bone tissue regeneration (2006) Chemistry of Materials, 18 (13), pp. 3137-3144. , DOI 10.1021/cm060488o
  • Yan, X., Huang, X., Yu, C., Deng, H., Wang, Y., Zhang, Z., Qiao, S., Zhao, D., The in-vitro bioactivity of mesoporous bioactive glasses (2006) Biomaterials, 27 (18), pp. 3396-3403
  • Bretcanu, O., Samaille, C., Boccaccini, A.R., Simple methods to fabricate Bioglass (R)-derived glass-ceramic scaffolds exhibiting porosity gradient (2008) J. Mater. Sci., 43 (12), pp. 4127-4134
  • Von Doernberg, M.-C., Von Rechenberg, B., Bohner, M., Grunenfelder, S., Van Lenthe, G.H., Muller, R., Gasser, B., Auer, J., In vivo behavior of calcium phosphate scaffolds with four different pore sizes (2006) Biomaterials, 27 (30), pp. 5186-5198. , DOI 10.1016/j.biomaterials.2006.05.051, PII S014296120600490X
  • Hollister, S.J., Porous scaffold design for tissue engineering (2005) Nature Materials, 4 (7), pp. 518-524. , DOI 10.1038/nmat1421

Citas:

---------- APA ----------
Minaberry, Y. & Jobbágy, M. (2011) . Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chemistry of Materials, 23(9), 2327-2332.
http://dx.doi.org/10.1021/cm103362c
---------- CHICAGO ----------
Minaberry, Y., Jobbágy, M. "Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying" . Chemistry of Materials 23, no. 9 (2011) : 2327-2332.
http://dx.doi.org/10.1021/cm103362c
---------- MLA ----------
Minaberry, Y., Jobbágy, M. "Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying" . Chemistry of Materials, vol. 23, no. 9, 2011, pp. 2327-2332.
http://dx.doi.org/10.1021/cm103362c
---------- VANCOUVER ----------
Minaberry, Y., Jobbágy, M. Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chem. Mater. 2011;23(9):2327-2332.
http://dx.doi.org/10.1021/cm103362c