Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A study was conducted to demonstrate the use of urease to drive HAP-like film deposition over the silica surface under mild conditions. The study used a synthetic monodispersed submicrometric silica spheres as a model substrate to simplify mass transport boundary conditions. Direct adsorption of urease on the silica surface was carried out to achieve silica functionalization. Covalent anchorage was also used to perform proper active enzyme loadings on the silica surface without shielding it with polyelectrolytes. Amino-capped silica particles were synthesized and biofunctionalized with urease during the study using direct covalent attachment with glutaraldehyde as coupling agent. This method proved that urease functionalized silica can be used as an interface for nucleation and growth of HAP-like coatings under mild conditions and short aging times.

Registro:

Documento: Artículo
Título:Urease functionalized silica: A biohybrid substrate to drive self-mineralization
Autor:Ortega, I.; Jobbágy, M.; Ferrer, M.L.; Del Monte, F.
Filiación:Instituto de Ciencia de Materiales de Madrid-ICMM, Consejo Superior de Investigaciones Científicas-CSIC, Campus de Cantoblanco, 28049-Madrid, Spain
CONICET-INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA-Buenos Aires, Argentina
Palabras clave:Adsorption; Aldehydes; Amines; Coupling agents; Hazardous materials; Mineralogy; Polymers; Covalent attachments; Enzyme loadings; Film depositions; Functionalization; Functionalized silicas; Glutaraldehyde; Mass transports; Model substrates; Mono-dispersed; Nucleation and growths; Silica particles; Silica spheres; Silica surfaces; Silica
Año:2008
Volumen:20
Número:24
Página de inicio:7368
Página de fin:7370
DOI: http://dx.doi.org/10.1021/cm8021566
Título revista:Chemistry of Materials
Título revista abreviado:Chem. Mater.
ISSN:08974756
CODEN:CMATE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08974756_v20_n24_p7368_Ortega

Referencias:

  • Dorozhkin, S.V., tipple, M., Angew. Chem., Int. Ed, IVML 41, pp. 313U
  • Kokubo, T., Kim, H.-M., Kawashita, M., (2003) Biomaterials, 24, p. 2161
  • Kim, H.-M., Miyaji, F., Kokubo, T., Nakamura, T.J., (1996) Biomed. Mater. Res, 32 (3), p. 409
  • Wang, C.K., Chem Lin, J.H., Ju, C.P., Ong, H.C., Chang, R.P.H., (1997) Biomaterials, 18 (20), p. 1331
  • Weng, J., Liu, Q., Wolke, J.G.C., Zhang, X., De Groot, K., (1997) Biomaterials, 18 (15), p. 1027
  • Jansen, J.A., Wolke, J.G., Swann, S., Van der Waerden, J.P., de Groot, K., (1993) Clin. Oral Implant Res, 4 (1), p. 28
  • Zhan, J., Tseng, Y.H., Chan, J.C.C., Mou, C.Y., (2005) Adv. Fund. Mater, 2005, p. 15
  • Song, J., Saiz, E., Bertozzi, C.R., (2003) J. Am. Chem. Soc, 125 (5), p. 1236
  • Xu, A.-W., Ma, Y., Cölfen, H., (2007) J. Mater. Chem, 17 (5), p. 415
  • Schnepp, Z.A.C., Gonzalez-McQuire, R., Mann, S., (2006) Adv. Mater, 18 (14), p. 1869
  • Shukoor, M. 1.; Natalio, F.; Therese, H. A.; Tahir, M. N.; Ksenofontov, V.; Panthöfer, M.; Eberhardt, M.; Theato, P.; Schröder, H. C; Muller, W. E. G.; Tremel, W. Chem. Mater. 2008, 20 (11), 3567; Roth, K. M.; Zhou, Y.; Yang, W.; Morse, D. E. J. Am. Chem. Soc. 2005,127, 325. Kisailus, D.; Najarian, M.; Weaver, J. C: Morse, D. E. Adv. Mater. 2005, 77(10), 1234; Michel, M., Winterhalter, M., Darbois, L., Hemmerle, J., Voegel, J.C., Schaaf, P., Ball, V., (2004) Langmuir, 20, p. 6127
  • Banks, E., Nakajima, S., Shapiro, L.C., (1977) Science, 198 (4322), p. 1164
  • Yamauchi, K., Goda, T., Takeuchi, N., Einaga, H., Tanabe, T., (2004) Biomaterials, 25, p. 5481
  • Doi, Y., Horiguchi, T., Moriwaki, Y., Kitago, H., Kajimoto, T., Iwayama, Y., (1996) J. Biomed. Mater. Res, 31 (1), p. 43
  • Sondi, Matijevicì, E., (2001) J. Colloid Interface Sci, 238, p. 208
  • Sondi, I., Škapin, S.D., Salopek-Sondi, B., (2008) Cryst. Growth Des, 8 (2), p. 435
  • Lu, X., Leng, Y., (2005) Biomaterials, 26, p. 1097
  • Bayraktar, D., Tas, A.C., (2001) J. Mater. Sci. Lett, 20, p. 401
  • Jokic, B., Tanaskovic, D., Jankovic-Castvan, I., Drmanic, S., Petrovic, R., Janackovic, D., (2007) J. Mater. Res, 22 (5), p. 1156
  • Nozaki, J., Aizawa, M., Uchida, H., Itatani, K., Suemasu, H., Nozue, A., Okada, I., Toyama, Y., (2003) Key Eng. Mater, 240-242, p. 603
  • Unuma, H., Hiroya, M., Ito, A., (2007) J. Mater. Sci.: Mater. Med, 18, p. 987
  • Unuma, H., Ito, A., (2006) Key Eng. Mater, 309-311, p. 667
  • Vallet-Regiì, M., Romero, A.M., Ragel, C.V., LeGeros, R.Z., (1999) J. Biomed. Mater. Res, 44 (4), p. 416
  • Colilla, M., Salinas, A.J., Vallet-Regí, M., (2006) Chem. Mater, 18, p. 5676
  • Tomsia, A.P., Saiz, E., Song, J., Bertozzi, C.R., (2005) Adv. Eng. Mater, 7 (11), p. 999
  • Wang, Y.; Caruso, F. Chem. Mater. 2005, 17 (5), 953. Wang, Y.; Caruso, F. Chem. Commun. 2004, 70(13), 1528; Lvov, Y., Caruso, F., (2001) Anal. Chem, 73 (17), p. 4212
  • Ayhan, F., Yousefi Rad, A., Ayhan, H., (2003) J. Biomed. Mater. Res, 64 (1), p. 13
  • Yang, M.-C., Lin, C.-C., (2001) Biomateríals, 22 (9), p. 891
  • Krajewska, B., Chudy, M., Drozdek, M., Brzózka, Z., (2003) Electroanalysis, 5, p. 460
  • Park, I.S., Hausinger, R.P., (1996) Biochemistry, 35, p. 5345
  • Krajewska, B., Zaborska, W., (1999) J. Mol. Catal. B, Enzymatic, 6, p. 75
  • Marzadori, C., Miletti, S., Gessa, C., Ciurli, S., (1998) Soil Biol. Biochem, 30, p. 1485
  • Borum, L., Wilson Jr, O.C., (2003) Biomaterials, 24 (21), p. 3681
  • Borum-Nicholas, L., Wilson, 0.C., Jr Biomaterials (2003), 24 (21), p. 3671; Ogino, M., Hench, L.L., (1980) J. Non-Cryst. Solids, 38-39, p. 673
  • Gao, X., Yu, K.M.K., Tam, K.Y., Tsang, S.C., (2003) Chem. Commun, 9 (24), p. 2998
  • Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A.P., (2001) J. Phys. Chem. B, 105 (37), p. 8861
  • Mulvaney, P., Liz-Marzaìn, L.M., Giersig, M., Ung, T., (2000) J. Mater. Chem, 10 (6), p. 1259
  • Gutiérrez, M.C., Jobbágy, M., Ferrer, M.L., Del Monte, F., (2008) Chem. Mater, 20, p. 11
  • Yu, A., Gentle, I., Lu, G., Caruso, F., (2006) Chem. Commun, 20, p. 2150

Citas:

---------- APA ----------
Ortega, I., Jobbágy, M., Ferrer, M.L. & Del Monte, F. (2008) . Urease functionalized silica: A biohybrid substrate to drive self-mineralization. Chemistry of Materials, 20(24), 7368-7370.
http://dx.doi.org/10.1021/cm8021566
---------- CHICAGO ----------
Ortega, I., Jobbágy, M., Ferrer, M.L., Del Monte, F. "Urease functionalized silica: A biohybrid substrate to drive self-mineralization" . Chemistry of Materials 20, no. 24 (2008) : 7368-7370.
http://dx.doi.org/10.1021/cm8021566
---------- MLA ----------
Ortega, I., Jobbágy, M., Ferrer, M.L., Del Monte, F. "Urease functionalized silica: A biohybrid substrate to drive self-mineralization" . Chemistry of Materials, vol. 20, no. 24, 2008, pp. 7368-7370.
http://dx.doi.org/10.1021/cm8021566
---------- VANCOUVER ----------
Ortega, I., Jobbágy, M., Ferrer, M.L., Del Monte, F. Urease functionalized silica: A biohybrid substrate to drive self-mineralization. Chem. Mater. 2008;20(24):7368-7370.
http://dx.doi.org/10.1021/cm8021566