Artículo

Sánchez, M.A.; Ariza, J.P.; García, H.P.A.; Gianni, G.M.; Weidmann, M.C.; Folguera, A.; Lince Klinger, F.; Martinez, M.P. "Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region" (2018) Journal of South American Earth Sciences. 87:247-257
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Flat subduction segments are generally related to cold lithospheric zones, which suggest low Heat flow values and therefore a deeper Curie isotherm. In this study we perform a geophysical analysis by using high - resolution magnetic data, obtaining shallower Curie point depths through the Chilean-Pampean flat-slab zone. Then using temperatures from borehole data and Curie Point Depths, we performed a Heat Flow map which indicates the existence of mean to high thermal anomalies across the Chilean - Pampean flat-slab. These results were contrasted with Elastic Thickness map (Te) obtained from the Eigen-6C4 gravity model. Low Te values acquired indicate zones with weak mechanical behavior in correspondence to thermal anomalous zones. This spatial correlation suggests that the local high thermal anomalies are conditioning the mechanical behavior of the lithosphere in the study area and the locations of geothermal sources. Overall, our results indicate that the thermal structure of the flat-slab segment is more heterogeneous than previously thought. This has implications for evolution, maturity and fluid circulation in foreland basins of the Main and Frontal cordilleras and the Precordillera thrust belts. Finally, further studies will allow improving our database as well as extending our understanding of the thermal structure of the Chilean-Pampean flat-slab. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region
Autor:Sánchez, M.A.; Ariza, J.P.; García, H.P.A.; Gianni, G.M.; Weidmann, M.C.; Folguera, A.; Lince Klinger, F.; Martinez, M.P.
Filiación:CONICET, Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan, Ruta 12, Km. 17, San Juan, CP 5407, Argentina
CONICET, Inst. Estudios Andinos “Don Pablo Groeber”, Dep. Cs. Geol, FCEN, U.B.A, Buenos Aires, Argentina
Palabras clave:Chilean-Pampean flat-slab; Curie Point Depth; Elastic thickness; Heat flow; Magnetic data; cordillera; Curie point; foreland basin; heat flow; lithospheric structure; magnetic field; slab; thermal structure; thermomechanics; Calluna vulgaris
Año:2018
Volumen:87
Página de inicio:247
Página de fin:257
DOI: http://dx.doi.org/10.1016/j.jsames.2017.09.036
Título revista:Journal of South American Earth Sciences
Título revista abreviado:J. South Am. Earth Sci.
ISSN:08959811
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v87_n_p247_Sanchez

Referencias:

  • Alfe, D., Gillan, M.J., Price, G.D., Thermodynamics from first principles: temperature and composition of the Earth's core (2003) Mineral. Mag., 67 (1), pp. 113-123
  • Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B.L., Foreland shortening and crustal balancing in the Andes at 30 S latitude (1990) Tectonics, 9 (4), pp. 789-809
  • Alvarado, P., Beck, S., Zandt, G., Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling (2007) Geophys. J. Int., 170 (2), pp. 858-875
  • Alvarado, P., Pardo, M., Gilbert, H., Miranda, S., Anderson, M., Saez, M., Beck, S., Flat-slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina (2009) Geol. Soc. Am. Memoirs, 204, pp. 261-278
  • Álvarez, O., Gimenez, M., Braitenberg, C., Folguera, A., GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region (2012) Geophys. J. Int., 190 (2), pp. 941-959
  • Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, C., GOCE derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin (2014) Tectonophysics, 622, pp. 198-215
  • Álvarez, O., Gimenez, M., Folguera, A., Spagnotto, S., Bustos, E., Baez, W., Braitenberg, C., New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models (2015) Elsevier Editor. Syst. J. Geodyn., 91, pp. 65-88
  • Amante, C., Eakins, B.W., ETOPO1 1 Arc- Minute Global Relief Model: Procedures, Data Sources and Analysis (2009), first ed. NOAA, National Geophysical Data Center Boulder, Colorado, USA pp: 54; Anderson, M., Alvarado, P., Zandt, G., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina (2007) Geophys. J. Int., 171 (1), pp. 419-434
  • Barazangi, M., Isacks, B., Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America (1976) Geology, 4, pp. 686-692
  • Barazangi, M., Isacks, B.L., Subduction of the Nazca plate beneath Peru: evidence from spatial distribution of earthquakes (1979) Geophys. J. Int., 57 (3), pp. 537-555
  • Barthelmes, F., (2009) Definition of Functionals of the Geopotential and their Calculation from Spherical Harmonic Models, 104132. , http://publications.iass-potsdam.de/pubman/item/escidoc, (3), 0902–2
  • Barthelmes, F., Global Models. Encyclopedia of Geodesy (2014), pp. 1-9. , Springer International Publishing; Blackwell, D.D., Heat-flow determinations in the northwestern United States (1969) J. Geophys. Res., 74 (4), pp. 992-1007
  • Blackwell, D.D., The thermal structure of the continental crust (1971) Struct. Phys. Prop. earth's crust, pp. 169-184
  • Blakely, R., Potential Theory in Gravity and Magnetic Applications (1995), Cambridge University Press 441 pp; Borzotta, E., Mamaní, M.J., Venencia, J.E., Preliminary Magnetotelluric study of Ambato and Valle Fértil Lineaments in Bermejo Basin and Sierra de Valle Fértil, San Juan, Argentina (2009) Acta Geodaetica et Geophysica Hungarica, 44 (2), pp. 157-166
  • Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields (2011) Geol. Soc. Lond. Spec. Publ., 357 (1), pp. 329-341
  • Briggs, I.C., Machine contouring using minimum curvature (1974) Geophysics, 39 (1), pp. 39-48
  • Brocher, T.M., Empirical relations between elastic wave speeds and density in the Earth's crust (2005) Bull. Seismol. Soc. Am., 95 (6), pp. 2081-2092
  • Cahill, T., Isacks, B.L., Seismicity and shape of the subducted Nazca plate (1992) J. Geophys. Res. Solid Earth, 97 (B12), pp. 17503-17529
  • Cheesman, S., MacLeod, I., Hollyer, G., A new, rapid, automated grid stitching algorithm (1998) Explor. Geophys., 29 (3-4), pp. 301-305
  • Chulick, G.S., Detweiler, S., Mooney, W.D., Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins (2013) J. S. Am. Earth Sci., 42, pp. 260-276
  • Cloos, M., Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts (1993) Geol. Soc. Am. Bull., 105 (6), pp. 715-737
  • Collo, G., Dávila, F.M., Nóbile, J., Astini, R.A., Gehrels, G., Clay mineralogy and thermal history of the Neogene Vinchina Basin, central Andes of Argentina: analysis of factors controlling the heating conditions (2011) Tectonics, 30 (4)
  • Collo, G., Ezpeleta, M., Dávila, F., Gimenez, M., Soler, S., Martina, F., Ávila, P., Shiuma, M., Basin termal structure in the Chilean-Pampean flat subduction zone (2017) The Making of the Chilean-argentinian Andes, , (in press)
  • Cornaglia, L., Ruiz, F., Introcaso, A., Análisis cortical de la cuenca Golfo de San Jorge utilizando anomalías de Bouguer y ondulaciones del geoide (2009) Rev. la Asoc. Geol. Argent., 65 (3), pp. 504-515
  • Cortés, J., Casa, A., Yamin, M., Pasini, M., Terrizzano, C., Unidades morfotectónicas, estructuras oblicuas y patrones de distribución de la deformación cuaternaria en la precordillera de cuyo (28°-33°S) (2014) Actas XIX Congreso Geológico Argentino, Córdoba. S20-14
  • Cortés, J.M., Casa, A., Pasini, M., Yamín, M., Terrizzano, C., Fajas oblicuas de deformación neotectónica en Precordillera y Cordillera Frontal (31° 30′ - 33° 30′ LS): controles paleotectónicos (2006) Rev. la Asoc. Geol. Argent., 61 (4), pp. 639-646
  • Currie, C.A., Hyndman, R.D., Wang, K., Kostoglodov, V., Thermal models of the Mexico subduction zone: implications for the megathrust seismogenic zone (2002) J. Geophys. Res. Solid Earth, 107 (B12)
  • Dávila, F.M., Lithgow-Bertelloni, C., Dynamic uplift during slab flattening (2015) Earth Planet. Sci. Lett., 425, pp. 34-43
  • Dobrin, M.B., Introduction to Geophysical Prospecting (1976), McGraw-hill; Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Biancale, R., EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (2014) GFZ Data Serv.
  • Frost, B.R., Shive, P.N., Magnetic mineralogy of the lower continental crust (1986) J. Geophys. Res. Solid Earth, 91 (B6), pp. 6513-6521
  • Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results (2011) Geophys. J. Int., 186 (1), pp. 45-58. , Journal of Geophysical Research. 91.6513–6521
  • Garcia, E.S., Sandwell, D.T., Luttrell, K.M., An iterative spectral solution method for thin elastic plate flexure with variable rigidity (2015) Geophys. J. Int., 200 (2), pp. 1012-1028
  • Gianni, G.M., García, H.P., Lupari, M., Pesce, A., Folguera, A., Plume overriding triggers shallow subduction and orogeny in the southern Central Andes (2017) Gondwana Res., 49, pp. 387-395
  • Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of central Chile and Argentina (2006) Geophys. J. Int., 165 (1), pp. 383-398
  • Gimenez, M.E., Martinez, M.P., Jordan, T., Ruíz, F., Lince Klinger, F., Gravity characterization of the La Rioja valley basin, Argentina (2009) Geophysics, 74 (3), pp. B83-B94
  • Gutscher, M.A., Olivet, J.L., Aslanian, D., Eissen, J.P., Maury, R., The “lost Inca Plateau”: cause of flat subduction beneath Peru? (1999) Earth Planet. Sci. Lett., 171 (3), pp. 335-341
  • Gutscher, M.A., Spakman, W., Bijwaard, H., Engdahl, E.R., Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin (2000) Tectonics, 19 (5), pp. 814-833
  • Gutscher, M.A., Andean subduction styles and their effect on thermal structure and interplate coupling (2002) J. S. Am. Earth Sci., 15 (1), pp. 3-10
  • Hamza, V.M., Cardoso, R.R., Ponte Neto, C.F., Spherical harmonic analysis of earth's conductive heat flow (2008) Int. J. Earth Sci., 97 (2), pp. 205-226
  • Hamza, V.M., Gomes, A.J.L., Ferreira, L.E.T., Status report on geothermal energy developments in Brazil (2005) Natural Gas, 14. , 7-5
  • Henry, S.G., Pollack, H.N., Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru (1988) J. Geophys. Res. Solid Earth, 93 (B12), pp. 15153-15162
  • Hinze, W.J., Bouguer reduction density, why 2.67? (2003) Geophysics, 68 (5), pp. 1559-1560
  • Hinze, W.J., Von Frese, R.R., Saad, A.H., Gravity and Magnetic Exploration: Principles, Practices, and Applications (2013), Cambridge University Press; Hofmann-Wellenhof, B., Moritz, H., Physical Geodesy (2006), Springer Science & Business Media; Introcaso, A., Geodesia Física (2006), Instituto de Fisiografía y Geología“ Dr. Alfredo Castellanos”; Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., Litvak, V.D., Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics (2014) Earth Planet. Sci. Lett., 408, pp. 390-401
  • Jones, R.E., Kirstein, L.A., Kasemann, S.A., Dhuime, B., Elliott, T., Litvak, V.D., Alonso, R., Hinton, R., Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: insights from the O and Hf isotopic composition of zircon (2015) Geochimica Cosmochimica Acta, 164, pp. 386-402
  • Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Alonso, R.N., Hinton, R., The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes (2016) Lithos, 262, pp. 169-191
  • Jordan, T., Isacks, B., Allmendinger, R.W., Bewer, J., Ramos, V.A., Ando, C., Andean tectonics related to geometry of subducted Nazca Plate (1983) Geol. Soc. Am. Bull., 94, pp. 341-361
  • Kane, M.F., A comprehensive system of terrain corrections using a digital computer (1962) Geophysics, 27 (4), pp. 455-462
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Gordillo, C.E., Tertiary Andean magmatism in Chile and Argentina between 28 S and 33 S: Correlation of magmatic chemistry with a changing Benioff zone (1988) J. S. Am. Earth Sci., 1 (1), pp. 21-38
  • Kay, S.M., Mpodozis, C., Ramos, V.A., Munizaga, F., Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33 S) (1991) Geol. Soc. Am. Special Pap., 265, pp. 113-138
  • Kay, S.M., Abbruzzi, J.M., Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30 S and 32 S (1996) Tectonophysics, 259 (1-3), pp. 15-28
  • Kay, S.M., Mpodozis, C., Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab (2002) J. S. Am. Earth Sci., 15 (1), pp. 39-57
  • Köther, N., Götze, H.J., Gutknecht, B.D., Jahr, T., Jentzsch, G., Lücke, O.H., Mahatsente, R., Zeumann, S., The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? (2012) J. Geodyn., 59, pp. 207-218
  • Li, X., Vertical resolution: gravity versus vertical gravity gradient (2001) Lead. Edge, 20 (8), pp. 901-904
  • Li, C.F., Lu, Y., Wang, J., A global reference model of Curie-point depths based on EMAG2 (2017) Sci. Rep., 7
  • Lince Klinger, F., Martinez, M.P., Gimenez, M.E., Ruiz, F., Álvarez, O., Modelo gravimétrico en la Fosa de Gastre, Provincia de Chubut, Argentina (2011) Bol. Geol. Min., 122 (3), pp. 299-310
  • Lowry, A.R., Ribe, N.M., Smith, R.B., Dynamic elevation of the Cordillera, western United States (2000) J. Geophys. Res., 105 (B10), pp. 23-371
  • Manea, V.C., Manea, M., Kostoglodov, V., Sewell, G., Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport (2005) Phys. Earth Planet. Interiors, 149 (1), pp. 165-186
  • Manea, V.C., Manea, M., Flat-slab thermal structure and evolution beneath central Mexico (2011) Pure Appl. Geophys., 168 (8), pp. 1475-1487
  • Manea, V.C., Pérez-Gussinyé, M., Manea, M., Chilean flat slab subduction controlled by overriding plate thickness and trench rollback (2012) Geology, 40 (1), pp. 35-38
  • Manea, V.C., Manea, M., Ferrari, L., Orozco, T., Valenzuela, R.W., Husker, A., Kostoglodov, V., A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile (2016) Tectonophysics, 695, pp. 27-52
  • Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., Pardo, M., Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29–35 S) (2014) Geophys. J. Int., 199 (3), pp. 1633-1654
  • Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Caratori Tontini, F., EMAG2: a 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements (2009) Geochem. Geophys. Geosystems, 10 (8)
  • Murphy, J.B., Oppliger, G.L., Brimhall, G.H., Hynes, A., Plume-modified orogeny: an example from the western United States (1998) Geology, 26, pp. 731-734
  • Nagy, D., The gravitational attraction of a right rectangular prism (1966) Geophysics, 31 (2), pp. 362-371
  • Oldenburg, D.W., The inversion and interpretation of gravity anomalies (1974) Geophysics, 39 (4), pp. 526-536
  • Parker, R.L., The rapid calculation of potential anomalies (1973) Geophys. J. Int., 31 (4), pp. 447-455
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., An earth gravitational model to degree 2160: EGM2008 (2008) EGU General Assem., 2008 (4). , 4–2
  • Pesce, A., Miranda, F., Catálogo de manifestaciones termales de la República Argentina (2003), pp. 1666-3462. , Vol. I-II Región Noroeste. SEGEMAR, Buenos Aires; Pilger, R.H., Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes (1981) Geol. Soc. Am. Bull., 92 (7), pp. 448-456
  • Ramos, V.A., Cristallini, E.C., Pérez, D.J., The pampean flat-slab of the central Andes (2002) J. S. Am. Earth Sci., 15 (1), pp. 59-78
  • Ravat, D., Pignatelli, A., Nicolosi, I., Chiappini, M., A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data (2007) Geophys. J. Int., 169 (2), pp. 421-434
  • Reguzzoni, M., Sampietro, D., GEMMA: an Earth crustal model based on GOCE satellite data (2015) Int. J. Appl. Earth Obs. Geoinf., 35, pp. 31-43
  • Ross, H.E., Blakely, R.J., Zoback, M.D., Testing the use of aeromagnetic data for the determination of Curie depth in California (2006) Geophysics, 71 (5), pp. 51-59
  • Roy, R.F., Blackwell, D.D., Decker, E.R., Continental heat flow (1972) Nat. solid Earth, pp. 506-543
  • Ruiz, F., Introcaso, A., Curie point depths beneath Precordillera Cuyana and Sierras Pampeanas obtained from spectral analysis of magnetic anomalies (2004) Gondwana Res., 7 (4), pp. 1133-1142
  • Ruiz, F., Luna, E., Vargas, D., Gimenez, M., Martinez, P., Importancia del Ajuste y Nivelación de Datos Aeromagnéticos a partir de Magnetometría Terrestre (2011) 18° Congreso Geológico Argentino, Actas, pp. 1198-1199. , (Neuquén)
  • Sampietro, D., Reguzzoni, M., Negretti, M., The GEMMA crustal model: first validation and data distribution (2013) Proceedings of the ESA Living Planet Symposium, , ESA SP-722 Edinburgh (UK) 9–13 September 2013
  • Sánchez, M.A., Winocur, D., Álvarez, O., Folguera, A., Martinez, M.P., Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data (2017) J. S. Am. Earth Sci., 73, pp. 153-167
  • Shapiro, N.M., Ritzwoller, M.H., Thermodynamic constraints on seismic inversions (2004) Geophys. J. Int., 157 (3), pp. 1175-1188
  • Smalley, R.F., Isacks, B.L., A high-resolution local network study of the Nazca Plate Wadati-Benioff Zone under western Argentina (1987) J. Geophys. Res. Solid Earth, 92 (B13), pp. 13903-13912
  • Soler, S.R., Métodos Espectrales para la Determinación de la Profundidad del Punto de Curie y Espesor Elástico de la Corteza Terrestre (2015), Facultad de Ciencias Exactas, Ingeniería y Agrimensura (FCEIA), Universidad Nacional de Rosario (UNR) (Tesis de Grado para Título de Licenciado en Física. Inédito); Springer, M., Förster, A., Heat-flow density across the Central Andean subduction zone (1998) Tectonophysics, 291 (1), pp. 123-139
  • Stauder, W., Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plate (1973) J. Geophys. Res., 78 (23), pp. 5033-5061
  • Tanaka, A., Okubo, Y., Matsubayashi, O., Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia (1999) Tectonophysics, 306 (3), pp. 461-470
  • Tassara, A., Götze, H.J., Schmidt, S., Hackney, R., Three-dimensional density model of the Nazca plate and the Andean continental margin (2006) J. Geophys. Res. Solid Earth, 111 (B9)
  • Turcotte, D.L., Schubert, G., Geodynamics (2002), Cambridge University Press New York; Vlaar, N.J., Van Keken, P.E., Van den Berg, A.P., Cooling of the Earth in the Archaean: consequences of pressure-release melting in a hotter mantle (1994) Earth Planet. Sci. Lett., 121 (1-2), pp. 1-18
  • Van Hunen, J., Van Den BERG, A.P., Vlaar, N.J., On the role of subducting oceanic plateaus in the development of shallow flat subduction (2002) Tectonophysics, 352 (3), pp. 317-333
  • Watts, A.B., Isostasy and Flexure of the Lithosphere (2001), Cambridge University Press; Weidmann, C., Spagnotto, S., Giménez, M., Martínez, P., Álvarez, O., Sánchez, M., Lince Klinger, F., Crustal structure and tectonic setting of the south central Andes from gravimetric analysis (2013) Geofís. Int., pp. 197-208. , 52-3
  • Weidmann, C., Ariza, J.P., Sánchez, M., Gimenez, M., Christiansen, R., Magnetic crustal features in the Vinchina basin (2017) J. S. Am. Earth Sci., 76, pp. 94-100
  • Ziagos, J.P., Blackwell, D.D., Mooser, F., Heat flow in southern Mexico and the thermal effects of subduction (1985) J. Geophys. Res. Solid Earth, 90 (B7), pp. 5410-5420

Citas:

---------- APA ----------
Sánchez, M.A., Ariza, J.P., García, H.P.A., Gianni, G.M., Weidmann, M.C., Folguera, A., Lince Klinger, F.,..., Martinez, M.P. (2018) . Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region. Journal of South American Earth Sciences, 87, 247-257.
http://dx.doi.org/10.1016/j.jsames.2017.09.036
---------- CHICAGO ----------
Sánchez, M.A., Ariza, J.P., García, H.P.A., Gianni, G.M., Weidmann, M.C., Folguera, A., et al. "Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region" . Journal of South American Earth Sciences 87 (2018) : 247-257.
http://dx.doi.org/10.1016/j.jsames.2017.09.036
---------- MLA ----------
Sánchez, M.A., Ariza, J.P., García, H.P.A., Gianni, G.M., Weidmann, M.C., Folguera, A., et al. "Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region" . Journal of South American Earth Sciences, vol. 87, 2018, pp. 247-257.
http://dx.doi.org/10.1016/j.jsames.2017.09.036
---------- VANCOUVER ----------
Sánchez, M.A., Ariza, J.P., García, H.P.A., Gianni, G.M., Weidmann, M.C., Folguera, A., et al. Thermo-mechanical analysis of the Andean lithosphere over the Chilean-Pampean flat-slab region. J. South Am. Earth Sci. 2018;87:247-257.
http://dx.doi.org/10.1016/j.jsames.2017.09.036