Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Although extensional deformation plays a significant part of Andean history, the causes behind its driving mechanisms and its impact throughout the geological record remain controversial. Through the aid of numerical modeling of subduction zone dynamics, we were able to reproduce a brief period of intra-arc basin formation that affected the Southern Central Andes (27°-46°S) during late Oligocene and early Miocene times. The results of the model show that, after a period of slow subduction (6–8 cm/yr), the oceanic plate approaches the mantle transition zone at ca. 23 Ma, triggering the slab pull force. The addition of this slab pull force generates a progressive increase in convergence velocity (reaching ∼20 cm/yr) and the retreat of the trench hinge away from the upper plate, resulting in the steepening of the slab. Effects observed in the upper plate are the formation of a basin located 200–300 km east of the trench and an asthenospheric influx beneath an 800 km wide zone east of the oceanic and continental plate's boundary. A series of parameters extracted from our model, such as the basin depth and the stretching factor, indicate that crustal stretching, basin formation, convergence velocity and asthenospheric influx would have reached their climax approximately at 20 Ma. These results are in good correlation with the convergence rate obtained through plate reconstructions and the geological record along the Southern Central Andes, where a series of extensional intra-arc basins were created and mantle derived magmatic processes affected a wide area ranging between the present fore-arc and retroarc areas during late Oligocene to early Miocene times. However, differences in extension magnitude, magma composition and basin fill depositional environment are observed, indicating that the impact of the slab pull force was stronger towards the southern basins. Possible causes that could explain these differences are variations in crustal thickness before the influence of the slab pull force and the effect of toroidal mantle flow near the southern lateral slab edge. This would indicate that although the main parameter controlling tectonic regime is the absolute motion of the overriding plate, the slab pull force may leave its imprint along the evolution of subduction-type orogens such as the Andes. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46°S): Insights from numerical modeling
Autor:Fennell, L.M.; Quinteros, J.; Iannelli, S.B.; Litvak, V.D.; Folguera, A.
Filiación:CONICET - Universidad de Buenos Aires, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN), Buenos Aires, 1428, Argentina
GFZ Helmholtz Centre Potsdam, Telegrafenberg, Potsdam, 14473, Germany
Palabras clave:Asthenospheric influx; Back-arc basin; Convergence velocity; Intra-arc basin; Subduction; Synextensional deposition; asthenosphere; backarc basin; deformation; depositional environment; Miocene; numerical model; Oligocene; plate boundary; slab; subduction zone; Andes
Año:2018
Volumen:87
Página de inicio:174
Página de fin:187
DOI: http://dx.doi.org/10.1016/j.jsames.2017.12.012
Título revista:Journal of South American Earth Sciences
Título revista abreviado:J. South Am. Earth Sci.
ISSN:08959811
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v87_n_p174_Fennell

Referencias:

  • Allmendinger, R.W., Jordan, T.E., Kay, S.M., Isacks, B.L., The evolution of the altiplano-puna plateau of the central Andes (1997) Annu. Rev. Earth Planet Sci., 25 (1), pp. 139-174
  • Aragón, E., D'Eramo, F., Castro, A., Pinotti, L., Brunelli, D., Rabbia, O., Rivalenti, G., Ribot, A., Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction-transcurren plate margin transition (2011) Tectonophysics, 509, pp. 218-237
  • Arévalo, C., Rivera, O., Iriarte, S., Mpodozis, C., Cuencas extensionales y campos de calderas del Cretácico superior-Terciario inferior en la precordillera de Copiapo (27°-28°S), Chile (1994) Actas VII° Congreso Geológico Chileno, 2, pp. 1288-1292
  • Baby, P., Hérail, G., Salinas, R., Sempere, T., Geometry and kinematic evolution of passive roof duplexes deduced from cross section balancing: example from the foreland thrust system of the southern Bolivian Subandean Zone (1992) Tectonics, 11 (3), pp. 523-536
  • Bechis, F., Encinas, A., Concheyro, A., Litvak, V.D., Aguirre-Urreta, B., Ramos, V.A., New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°–43° S): paleogeographic and tectonic implications (2014) J. S. Am. Earth Sci., 52, pp. 72-93
  • Blisniuk, P.M., Stern, L.A., Chamberlain, C.P., Idleman, B., Zeitler, P.K., Climatic and ecologic changes during Miocene surface uplift in the southern patagonian Andes (2005) Earth Planet Sci. Lett., 230 (1), pp. 125-142
  • Brune, S., Popov, A.A., Sobolev, S.V., Modeling suggests that oblique extension facilitates rifting and continental break-up (2012) J. Geophys. Res.: Solid Earth, 117
  • Brune, S., Popov, A.A., Sobolev, S.V., Quantifying the thermo-mechanical impact of plume arrival on continental break-up (2013) Tectonophysics, 604, pp. 51-59
  • Brune, S., Heine, C., Pérez-Gussinyé, M., Sobolev, S.V., Rift migration explains continental margin asymmetry and crustal hyper-extension (2014) Nat. Commun., 5
  • Brune, S., Williams, S.E., Butterworth, N.P., Müller, R.D., Abrupt plate accelerations shape rifted continental margins (2016) Nature, 536 (7615), pp. 201-204
  • Burns, W.M., Jordan, T.E., Copeland, P., Kelley, S.A., The case for extensional tectonics in the Oligocene-Miocene Southern Andes as recorded in the Cura Mallín basin (36–38 S) (2006) Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°-39°S Lat), 407, pp. 163-184. , S.M. Kay V.A. Ramos Geological Society of America Special Papers
  • Cande, S.C., Leslie, R.B., Late Cenozoic tectonics of the southern Chile trench (1986) J. Geophys. Res.: Solid Earth, 91 (B1), pp. 471-496
  • Capitanio, F.A., Faccenna, C., Zlotnik, S., Stegman, D.R., Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline (2011) Nature, 480 (7375), pp. 83-86
  • Charrier, R., Wyss, A.R., Flynn, J.J., Swisher, C.C., Norell, M.A., Zapatta, F., McKenna, M.C., Novacek, M.J., New evidence for late mesozoic-early cenozoic evolution of the chilean Andes in the upper tinguiririca valley (35° S), Central Chile (1996) J. S. Am. Earth Sci., 9 (5), pp. 393-422
  • Charrier, R., Baeza, O., Elgueta, S., Flynn, J.J., Gans, P., Kay, S.M., Muñoz, N., Zurita, E., Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36 SL) (2002) J. S. Am. Earth Sci., 15 (1), pp. 117-139
  • Charrier, R., Pinto, L., Rodriguez, M.P., Tectonostratigraphic evolution of the andean orogen in Chile (2007) The Geology of Chile, pp. 21-114. , T. Moreno W. Gibbons The Geological Society of London London, UK
  • Charrier, R., Ramos, V.A., Tapia, F., Sagripanti, L., Tectono-stratigraphic evolution of the andean orogen between 31 and 37°S (Chile and western Argentina) (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, 399, pp. 13-61. , S.A. Sepúlveda L.B. Giambiagi S.M. Moreiras L. Pinto M. Tunik G.D. Hoke M. Farías The Geological Society of London London, UK Special Publications
  • Cerpa, N.G., Hassani, R., Gerbault, M., Prévost, J.H., A fictitious domain method for lithosphere-asthenosphere interaction: application to periodic slab folding in the upper mantle (2014) G-cubed, 15 (5), pp. 1852-1877
  • Cerpa, N.G., Araya, R., Gerbault, M., Hassani, R., Relationship between slab dip and topography segmentation in an oblique subduction zone: insights from numerical modeling (2015) Geophys. Res. Lett., 42 (14), pp. 5786-5795
  • Cobbold, P.R., Rosello, E.A., Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina (2003) Mar. Petrol. Geol., 20, pp. 429-443
  • Colli, L., Stotz, I., Bunge, H.P., Smethurst, M., Clark, S., Iaffaldano, G., Tassara, A., Bianchi, M.C., Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: evidence for temporal changes of pressure-driven upper mantle flow (2014) Tectonics, 33 (7), pp. 1304-1321
  • Coney, P.J., Evenchick, C.A., Consolidation of the american cordilleras (1994) J. S. Am. Earth Sci., 7 (3-4), pp. 241-262
  • DeCelles, P.G., Ducea, M.N., Kapp, P., Zandt, G., Cyclicity in Cordilleran orogenic systems (2009) Nat. Geosci., 2 (4), pp. 251-257
  • De la Fuente, D., Figueroa, O., Duhart, P., Quiroz, D., Demaiffe, D., Oliveros, V., Muñoz, J., Los intrusivos de Antearco del Cretácico Superior de Chile Centro Sur (39°S–40°S): petrografía y geoquímica (2012) Actas XIII Congreso Geológico Chileno, pp. 342-344
  • Dyhr, C.T., Holm, P.M., Llambías, E.J., Scherstén, A., Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40 Ar/39 Ar dating from the Mendoza Region, Argentina (2013) Lithos, 179, pp. 67-83
  • Dyhr, C.T., Holm, P.M., Llambías, E.J., Geochemical constraints on the relationship between the Miocene–Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: new insights from 40 Ar/39 Ar dating, Sr–Nd–Pb isotopes and trace elements (2013) J. Volcanol. Geoth. Res., 266, pp. 50-68
  • Echaurren, A., Folguera, A., Gianni, G., Orts, D., Tassara, A., Encinas, A., Tassara, A., Valencia, V., Tectonic evolution of the North Patagonia Andes (41° - 44°S) through recognition of syntectonic strata (2016) Tectonophysics, 677-678, pp. 99-114
  • Encinas, A., Zambrano, P.A., Finger, K.L., Valencia, V., Buatois, L.A., Duhart, P., Implications of deep-marine Miocene deposits on the evolution of the north patagonian Andes (2013) J. Geol., 121, pp. 215-238
  • Encinas, A., Pérez, F., Nielsen, S.N., Finger, K.L., Valencia, V., Duhart, P., Geochronologic and paleontologic evidence for a pacific-atlantic connection during the late oligocene–early Miocene in the patagonian Andes (43–44°S) (2014) J. S. Am. Earth Sci., 55, pp. 1-18
  • Encinas, A., Folguera, A., Oliveros, V., Del Mauro, L.D.G., Tapia, F., Riffo, R., Hervé, F., Álvarez, O., Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: implications for the tectonic development of the North Patagonian Andes (2016) Geol. Soc. Am. Bull., 128 (5-6), pp. 807-823
  • Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., Flat subduction dynamics and deformation of the South American plate: insights from analog modeling (2008) Tectonics, 27, p. 3
  • Fernández Paz, L., Litvak, V.D., Echaurren, A., Iannelli, S.B., Encinas, A., Folguera, A., Valencia, V., Late Eocene volcanism in north Patagonia (42° 30′–43° S): arc resumption after a stage of within-plate magmatism (2017) J. Geodyn., 113, pp. 13-31
  • Fernández Paz, L., Bechis, F., Litvak, V.D., Echaurren, A., Iannelli, S., Encinas, A., Oliveros, V., Valencia, V., Evolución del volcanismo de arco durante el Eoceno medio-Mioceno temprano en los Andes Patagónicos (2017) Actas XX Congreso Geológico Argentino, p. 6
  • Folguera, A., Ramos, V.A., Repeated eastward shifts of arc magmatism in the Southern Andes: a revision to the long-term pattern of Andean uplift and magmatism (2011) J. S. Am. Earth Sci., 32 (4), pp. 531-546
  • Folguera, A., Rojas Vera, E.A., Bottesi, G., Zamora Valcarce, G., Ramos, V.A., The loncopué trough: a cenozoic basin produced by extension in the southern central Andes (2010) J. Geodyn., 49 (5), pp. 287-295
  • Folguera, A., Naipauer, M., Sagripanti, L., Ghiglione, M., Orts, D.L., Giambiagi, L., Growth of the Southern Andes (2015), Springer Earth System Sciences; Franzese, J.R., D'Elia, L., Bilmes, A., Muravchik, M., Hernández, M., Superposición de cuencas extensionales y contraccionales oligo-miocenas en el retroarco andino norpatagónico: la Cuenca de Aluminé Neuquén, Argentina (2011) Andean Geol., 38 (2), pp. 319-334
  • Gansser, A., Facts and theories on the Andes (1973) J. Geol. Soc., 129, pp. 170-191
  • Garcia Morabito, E., Ramos, V.A., Andean evolution of the Aluminé fold and thrust belt, northern patagonian Andes (38 30′–40 30′ S) (2012) J. S. Am. Earth Sci., 38, pp. 13-30
  • Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., Rise of the Andes (2008) Science, 320 (5881), pp. 1304-1307
  • Gerbault, M., Cembrano, J., Mpodozis, C., Farias, M., Pardo, M., Continental margin deformation along the Andean subduction zone: thermo-mechanical models (2009) Phys. Earth Planet. In., 177 (3), pp. 180-205
  • Giambiagi, L., Mescua, J., Bechis, F., Tassara, A., Hoke, G., Thrust belts of the southern Central Andes: along-strike variations in shortening, topography, crustal geometry, and denudation (2012) Geol. Soc. Am. Bull., 124 (7-8), pp. 1339-1351
  • Gibert, G., Gerbault, M., Hassani, R., Tric, E., Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling (2012) Geophys. J. Int., 189 (2), pp. 747-760
  • Giovanni, M.K., Horton, B.K., Garzione, C.N., McNulty, B., Grove, M., Extensional basin evolution in the Cordillera Blanca, Peru: stratigraphic and isotopic records of detachment faulting and orogenic collapse in the Andean hinterland (2010) Tectonics, 29 (6)
  • Gillis, R.J., Horton, B.K., Grove, M., Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: implications for Cenozoic exhumation of the central Andean plateau (2006) Tectonics, 25
  • Godoy, E., Yáñez, G., Vera, E., Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences (1999) Tectonophysics, 306 (2), pp. 217-236
  • Gripp, A.E., Gordon, R.G., Young tracks of hotspots and current plate velocities (2002) Geophys. J. Int., 150, pp. 321-361
  • Gutscher, M.A., Andean subduction styles and their effect on thermal structure and interplate coupling (2002) J. S. Am. Earth Sci., 15 (1), pp. 3-10
  • Haschke, M., Günther, A., Melnick, D., Echtler, H., Reutter, K.J., Scheuber, E., Oncken, O., Central and southern Andean tectonic evolution inferred from arc magmatism (2006) The Andes, 22, pp. 337-353. , O. Oncken G. Chong G. Franz P. Giese H.J. Gotze V.A. Ramos M.R. Strecker P. Wigger Springer Berlin, Heidelberg
  • Hervé, F., Pankhurst, R.J., Drake, R., Beck, M.E., Pillow metabasalts in a mid-tertiary extensional basin adjacent to the Liquiñe-Ofqui fault zone: the Isla Magdalena area, Aysén, Chile (1995) J. S. Am. Earth Sci., 8 (1), pp. 33-46
  • Hervé, F., Sanhueza, A., Silva, C., Pankhurst, R.J., Fanning, M.C., Campbell, H., Crundwell, M., A Neogene age for Traiguén Formation, Aysén, Chile, as revealed by SHRIMP U-Pb dating of detrital zircons (2001) Actas III Simposio Sudamericano de Geología Isotópica. Pucón, Chile, pp. 570-574. , Servicio Nacional de Geología y Minería
  • Heuret, A., Lallemand, S., Plate motions, slab dynamics and back-arc deformation (2005) Phys. Earth Planet. In., 149 (1), pp. 31-51
  • Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of central Chile (1988) Contrib. Mineral. Petrol., 98 (4), pp. 455-489
  • Hoke, G.D., Giambiagi, L.B., Garzione, C.N., Mahoney, J.B., Strecker, M.R., Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina (2014) Earth Planet Sci. Lett., 406, pp. 153-164
  • Horton, B.K., Revised deformation history of the central Andes: inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, Bolivia (2005) Tectonics, 24
  • Horton, B.K., Fuentes, F., Sedimentary record of plate coupling and decoupling during growth of the Andes (2016) Geology, 44 (8), pp. 647-650
  • Horton, B.K., Fuentes, F., Boll, A., Starck, D., Ramírez, S.G., Stockli, D.F., Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina (2016) J. S. Am. Earth Sci., 71, pp. 17-40
  • Iannelli, S.B., Litvak, V.D., Fernández Paz, L., Folguera, A., Ramos, M.E., Ramos, V.A., Evolution of Eocene to Oligocene arc-related volcanism in the north patagonian Andes (39-41°S), prior to the break-up of the Farallón plate (2017) Tectonophysics, 696-697, pp. 70-87
  • James, D.E., Sacks, I.S., Cenozoic formation of the Central Andes: a geophysical perspective (1999) Geol. ore deposits of the Central Andes, 7, pp. 1-25
  • Jara, P., Charrier, R., Nuevos antecedentes estratigráficos y geocronológicos para el Meso-Cenozoico de la Cordillera Principal de Chile entre 32° y 32° 30’S: implicancias estructurales y paleogeográficas (2014) Andean Geol., 41 (1), pp. 174-209
  • Jara, P., Likerman, J., Winocur, D., Ghiglione, M.C., Cristallini, E.O., Pinto, L., Charrier, R., Role of basin width variation in tectonic inversion: insight from analogue modelling and implications for the tectonic inversion of the Abanico Basin, 32°–34° S, Central Andes (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, 399, pp. 83-107. , S.A. Sepúlveda L.B. Giambiagi S.M. Moreiras L. Pinto M. Tunik G.D. Hoke M. Farías The Geological Society of London London, UK Special Publications
  • Jones, R.E., Kirstein, L.A., Kasemann, S.A., Litvak, V.D., Poma, S., Elliott, T., Alonso, R., EIMF, The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the southern Central Andes (2016) Lithos, pp. 169-191
  • Jordan, T.E., Burns, W.M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., Mpodozis, C., Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes (2001) Tectonics, 20 (3), pp. 308-324
  • Kay, S.M., Copeland, P., Early to middle Miocene backarc magmas of the Neuquén Basin: geochemical consequences of slab shallowing and the westward drift of South America (2006) Geol. Soc. Am. Special Pap., 407, pp. 185-213
  • Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes (2005) Geol. Soc. Am. Bull., 117 (1-2), pp. 67-88
  • Kay, S.M., Burns, M., Copeland, P., Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin (2006) Evolution of an Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35-39°S), 407, pp. 19-60. , S.M. Kay V.A. Ramos Geological Society of America USA Special Papers
  • Kay, S.M., Ardolino, A.A., Gorring, M.L., Ramos, V.A., The Somuncura Large Igneous Province in Patagonia: interaction of a transient mantle thermal anomaly with a subducting slab (2007) J. Petrol., 48 (1), pp. 43-77
  • Kincaid, C., Griffiths, R.W., Variability in flow and temperatures within mantle subduction zones (2004) G-cubed, 5 (6)
  • Kley, J., Monaldi, C.R., Salfity, J.A., Along-strike segmentation of the Andean foreland: causes and consequences (1999) Tectonophysics, 301 (1), pp. 75-94
  • Litvak, V.D., Poma, S., Kay, S.M., Paleogene and Neogene magmatism in the Valle del Cura region: new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina (2007) J. S. Am. Earth Sci., 24, pp. 117-137
  • Litvak, V.D., Encinas, A., Oliveros, V., Bechis, F., Folguera, A., y Ramos, V.A., El volcanismo mioceno inferior vinculado con las ingresiones marinas en los Andes Nordpatagónicos (2014) Actas XIX Congreso Geológico Argentino, pp. S22-S35
  • Litvak, V.D., Spagnuolo, M.G., Folguera, A., Poma, S., Jones, R., Ramos, V.A., Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30-37’S), Argentina (2015) J. S. Am. Earth Sci., 64 (2), pp. 365-380
  • Litvak, V.D., Poma, S., Jones, R.E., Fernández Paz, L., Iannelli, S.B., Spagnuolo, M., Kirstein, L.A., Ramos, V.A., The late Paleogene to Neogene volcanic arc in the southern central Andes (28°-37°S) (2017) The Evolution of the Chilean-argentinean Andes, , A. Folguera E. Contreras Reyes N. Heredia A. Encinas S. Iannelli V. Oliveros F. Dávila G. Collo L. Giambiagi A. Maksymowicz P. Iglesia Llanos M. Turienzo M. Naipauer D. Orts V. Litvak O. Álvarez C. Arriagada Springer Earth System Sciences
  • Liu, K.H., Gao, S.S., Silver, P.G., Zhang, Y., Mantle layering across central South America (2003) J. Geophys. Res., 108
  • Lonsdale, P., Creation of the Cocos and Nazca plates by fission of the Farallon plate (2005) Tectonophysics, 404, pp. 237-264
  • Lopez-Escobar, L., Vergara, M., Eocene-Miocene longitudinal depression and Quaternary volcanism in the Southern Andes, Chile (33-42.5°S): a geochemical comparison (1997) Rev. Geol. Chile, 24 (2), pp. 227-244
  • Lossada, A.C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., Mardonez, D., Suriano, J., Thermochronologic evidence for late Eocene Andean mountain building at 30 S (2017) Tectonics, 36 (11), pp. 2693-2713
  • Maloney, K.T., Clarke, G.L., Klepeis, K.A., Quevedo, L., The Late Jurassic to present evolution of the Andean margin: drivers and the geological record (2013) Tectonics, 32
  • Manea, V.C., Pérez-Gussinyé, M., Manea, M., Chilean flat slab subduction controlled by overriding plate thickness and trench rollback (2012) Geology, 40 (1), pp. 35-38
  • Manea, V.C., Manea, M., Ferrari, L., Orozco, T., Valenzuela, R.W., Husker, A., Kostoglodov, V., A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile (2017) Tectonophysics, 695, pp. 27-52
  • Marrett, R., Strecker, M.R., Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions (2000) Tectonics, 19 (3), pp. 452-467
  • McNulty, B., Farber, D., Active detachment faulting above the Peruvian flat slab (2002) Geology, 30 (6), pp. 567-570
  • McQuarrie, N., Horton, B.K., Zandt, G., Beck, S., DeCelles, P.G., Lithospheric evolution of the Andean fold -thrust belt, Bolivia, and the origin of the Central Andean plateau (2005) Tectonophysics, 399, pp. 15-37
  • McQuarrie, N., Barnes, J.B., Ehlers, T.A., Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17 S) (2008) Tectonics, 27, p. 3
  • Mora, A., Parra, M., Strecker, M.R., Kammer, A., Dimaté, C., Rodríguez, F., Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia (2006) Tectonics, 25, p. 2
  • Mpodozis, C., Ramos, V.A., The Andes of Chile and Argentina (1990) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circum-pac. Counc. Energy Miner, Resour., Earth Sci. Set, 11, pp. 59-90. , G.E. Ericksen M.T. Cañas Pinochet J.A. Reinemud
  • Mpodozis, C., Allmendinger, R.W., Extensional tectonics, cretaceous Andes, northern Chile (27 S) (1993) Geol. Soc. Am. Bull., 105 (11), pp. 1462-1477
  • Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Cannon, J., Ocean basin evolution and global-scale plate reorganization events since Pangea breakup (2016) Annu. Rev. Earth Planet Sci., 44 (1), pp. 107-138
  • Muñoz, J., Troncoso, R., Duhart, P., Crignola, P., Farmer, L., Stern, C.R., The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate (2000) Rev. Geol. Chile, 27 (2), pp. 177-203
  • Muñoz, M., Fuentes, F., Vergara, M., Aguirr, L., Olov Nyström, J., Féraud, G., Demant, A., Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33° 50′S) (2006) Rev. Geol. Chile, 331, pp. 109-140
  • Noury, M., Philippon, M., Bernet, M., Paquette, J.L., Sempere, T., Geological record of flat slab–induced extension in the southern Peruvian forearc (2017) Geology, pp. G38990-G38991
  • O'Driscoll, L.J., Richards, M.A., Humphreys, D.E., Nazca–South America interactions and the late Eocene–late Oligocene flat-slab episode in the central Andes (2012) Tectonics, 31
  • Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., Schemann, K., Deformation of the Central Andean upper plate system - facts, fiction, and constraints for plateau models (2006) The Andes, 22, pp. 3-27. , O. Oncken G. Chong G. Franz P. Giese H.J. Gotze V.A. Ramos M.R. Strecker P. Wigger Springer Berlin, Heidelberg
  • Orts, D.L., Folguera, A., Encinas, A., Ramos, M., Tobal, J., Ramos, V.A., Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41° 30′-43° S) (2012) Tectonics, 31
  • Orts, D.L., Folguera, A., Giménez, M., Ruiz, F., Rojas Vera, E.A., Klinger, F.L., Cenozoic building and deformational processes in the north patagonian Andes (2015) J. Geodyn., 86, pp. 26-41
  • Pardo-Casas, F., Molnar, P., Relative motion of the Nazca (Farallon) and south american plates since late cretaceous time (1987) Tectonics, 6 (3), pp. 233-248
  • Pearce, J.A., Leat, P.T., Barker, P.F., Millar, I.L., Geochemical tracing of pacific-to-atlantic upper-mantle flow through the drake passage (2001) Nature, 410 (6827), pp. 457-461
  • Pesicek, J.D., Engdahl, E.R., Thurber, C.H., DeShon, H.R., Lange, D., Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30°-40°S), Chile (2012) Geophys. J. Int., 191, pp. 317-324
  • Piquer, J., Hollings, P., Rivera, O., Cooke, D.R., Baker, M., Testa, F., Along-strike segmentation of the Abanico basin, central Chile: new chronological, geochemical and structural constraints (2017) Lithos, 268-271, pp. 174-197
  • Piromallo, C., Becker, T.W., Funiciello, F., Faccenna, C., Three-dimensional instantaneous mantle flow induced by subduction (2006) Geophys. Res. Lett., 33
  • Popov, A.A., Sobolev, S.V., SLIM3D: atool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology (2008) Phys. Earth Planet. In., 171, pp. 55-75
  • Popov, A.A., Sobolev, S.V., Zoback, M.D., Modeling evolution of the San Andreas Fault system in northern and central California (2012) G-cubed, 13 (8)
  • Quinteros, J., Sobolev, S.V., Popov, A.A., Viscosity in transition zone and lower mantle: implications for slab penetration (2010) Geophys. Res. Lett., 37
  • Quinteros, J., Sobolev, S.V., Constraining kinetics of metastable olivine in the Marianas slab from seismic observations and dynamic models (2012) Tectonophysics, 526, pp. 48-55
  • Quinteros, J., Sobolev, S.V., Why has the Nazca plate slowed since the Neogene? (2013) Geology, 41 (1), pp. 31-34
  • Radic, J.P., Las cuencas cenozoicas y su control en el volcanismo de los Complejos Nevados de Chillán y Copahue-Callaqui (Andes del Sur, 36-39° S) (2010) Andean Geol., 37 (1), pp. 220-246
  • Ramos, M.E., Folguera, A., Fennell, L.M., Giménez, M., Litvak, V.D., Dzierma, Y., Ramos, V.A., Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40° S) (2014) J. S. Am. Earth Sci., 51, pp. 59-75
  • Ramos, M.E., Tobal, J.E., Sagripanti, L., Folguera, A., Orts, D.L., Giménez, M., Ramos, V.A., The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (∼ 42° S) (2015) J. S. Am. Earth Sci., 64 (2), pp. 467-485
  • Ramos, V.A., Plate tectonic setting of the andean cordillera (1999) Episodes, 22 (3), pp. 183-190
  • Ramos, V.A., Zapata, T., Cristallini, E., Introcaso, A., The Andean thrust system —latitudinal variations in structural styles and orogenic shortening (2004) Thrust Tectonics and Hydrocarbon Systems: AAPG Memoir, 82, pp. 30-50. , K.R. McClay
  • Ramos, V.A., Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes (2005) Tectonophysics, 399, pp. 73-86
  • Ramos, V.A., Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle (2009) Geol. Soc. Am. Mem., 204, pp. 31-65
  • Ramos, V.A., The tectonic regime along the Andes: present-day and Mesozoic regimes (2010) Geol. J., 45 (1), pp. 2-25
  • Ramos, V.A., Kay, S.M., Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions (1992) Tectonophysics, 2015 (1-3), pp. 261-282
  • Ramos, V.A., Kay, S.M., Overview of the tectonic evolution of the southern central Andes of Mendoza and Neuquén (35–39 S latitude) (2006) Geol. Soc. Am. Special Pap., 407, pp. 1-17
  • Ramos, V.A., Kay, S.M., Page, R., Muñizaga, F., La Ignimbrita Vacas Heladas y el cese del volcanismo en el Valle del Cura, provincia de San Juan (1989) Rev. Asoc. Geol. Argent., 44 (1-2), pp. 336-352
  • Rapela, C.W., Spalletti, L.A., Merodio, J.C., Aragón, E., Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40 S–42 30′ S) (1988) J. S. Am. Earth Sci., 1 (1), pp. 75-88
  • Rojas Vera, E.A., Folguera, A., Zamora Valcarce, G., Giménez, M., Ruiz, F., Martínez, P., Ramos, V.A., Neogene to Quaternary extensional reactivation of a fold and thrust belt: the Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38–39 S) (2010) Tectonophysics, 492 (1), pp. 279-294
  • Royden, L.H., The tectonic expression slab pull at continental convergent boundaries (1993) Tectonics, 12 (2), pp. 303-325
  • Schellart, W.P., Kinematics of subduction and subduction-induced flow in the upper mantle (2004) J. Geophys. Res.: Solid Earth, 109
  • Schellart, W.P., Overriding plate shortening and extension above subduction zones: a parametric study to explain formation of the Andes Mountains (2008) Geol. Soc. Am. Bull., 120 (11-12), pp. 1441-1454
  • Schellart, W.P., Moresi, L., A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: results from dynamic subduction models with an overriding plate (2013) J. Geophys. Res.: Solid Earth, 118 (6), pp. 3221-3248
  • Shockey, B.J., Flynn, J.J., Croft, D.A., Gans, P., Wyss, A.R., New leontiniid Notoungulata (Mammalia) from Chile and Argentina: comparative anatomy, character analysis, and phylogenetic hypotheses (2012) Am. Mus. Novit., 3737, pp. 1-64
  • Silvestro, J., Atencio, M., La cuenca cenozoica del río Grande y Palauco: edad, evolución y control estructural, faja plegada de Malargüe (2009) Rev. Asoc. Geol. Argent., 65 (1), pp. 154-169
  • Sobolev, S.V., Babeyko, A.Y., What drives orogeny in the Andes? (2005) Geology, 33 (8), pp. 617-620
  • Somoza, R., Zaffarana, C.B., Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera (2008) Earth Planet Sci. Lett., 271, pp. 267-277
  • Somoza, R., Ghidella, M.E., Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk (2005) Rev. Asoc. Geol. Argent., 60 (4), pp. 797-809
  • Somoza, R., Ghidella, M.E., Late Cretaceous to recent plate motions in western South America revisited (2012) Earth Planet Sci. Lett., 331, pp. 152-163
  • Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R., Trauth, M.H., Tectonics and climate of the southern central (2007) Andes. Annu. Rev. Earth Planet. Sci., 35, pp. 747-787
  • Suárez, M., Emparan, C., The stratigraphy, geochronology and paleophysiography of a Miocene fresh-water interarc basin, southern Chile (1995) J. S. Am. Earth Sci., 8 (1), pp. 17-31
  • van Dinther, Y., Morra, G., Funiciello, F., Faccenna, C., Role of the overriding plate in the subduction process: insights from numerical models (2010) Tectonophysics, 484, pp. 74-86
  • van Hunen, J., van den Berg, A.P., Vlaar, N.J., On the role of subducting oceanic plateaus in the development of shallow flat subduction (2002) Tectonophysics, 352 (3), pp. 317-333
  • van Hunen, J., van den Berg, A.P., Vlaar, N.J., Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study (2004) Phys. Earth Planet. In., 146 (1), pp. 179-194
  • Winocur, D.A., Litvak, V.D., Ramos, V.A., Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, 399, pp. 109-130. , S.A. Sepúlveda L.B. Giambiagi S.M. Moreiras L. Pinto M. Tunik G.D. Hoke M. Farías Geological Society of London London Special Publications
  • Wyss, A.R., Flynn, J.J., Norell, M.A., Swisher, C.C., III, Novacek, M.J., McKenna, M.C., Charrier, R., Paleogene mammals from the Andes of central Chile: a preliminary taxonomic, biostratigraphic and geochronologic assessment (1994) Am. Mus. Novit., 3098, pp. 1-31

Citas:

---------- APA ----------
Fennell, L.M., Quinteros, J., Iannelli, S.B., Litvak, V.D. & Folguera, A. (2018) . The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46°S): Insights from numerical modeling. Journal of South American Earth Sciences, 87, 174-187.
http://dx.doi.org/10.1016/j.jsames.2017.12.012
---------- CHICAGO ----------
Fennell, L.M., Quinteros, J., Iannelli, S.B., Litvak, V.D., Folguera, A. "The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46°S): Insights from numerical modeling" . Journal of South American Earth Sciences 87 (2018) : 174-187.
http://dx.doi.org/10.1016/j.jsames.2017.12.012
---------- MLA ----------
Fennell, L.M., Quinteros, J., Iannelli, S.B., Litvak, V.D., Folguera, A. "The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46°S): Insights from numerical modeling" . Journal of South American Earth Sciences, vol. 87, 2018, pp. 174-187.
http://dx.doi.org/10.1016/j.jsames.2017.12.012
---------- VANCOUVER ----------
Fennell, L.M., Quinteros, J., Iannelli, S.B., Litvak, V.D., Folguera, A. The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46°S): Insights from numerical modeling. J. South Am. Earth Sci. 2018;87:174-187.
http://dx.doi.org/10.1016/j.jsames.2017.12.012