Artículo

Sánchez, M.A.; Winocur, D.; Álvarez, O.; Folguera, A.; Martinez, M.P."Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data" (2017) Journal of South American Earth Sciences. 73:153-167
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Main Andes at the northern Chilean-Pampean flat slab segment were formed by the inversion of late Oligocene to early Miocene extensional depocenters in Neogene times. Their structure, size and depth are loosely constrained by field data since these sequences have amalgamated forming an almost continuous blanket with scarce basement outcrops. Satellite and aerial gravity and magnetic data are used in this work to define a 3D model that shows the basement structure at depth and adjust 2D structural sections previously based on field data. The results indicate complex basin geometry with depocenters of variable size and depth buried beneath Mesozoic (?)-Paleogene and Neogene sections. Additionally, previously proposed crustal heterogeneities across this orogenic segment are geophysically constrained with a new crustal heterogeneity identified on the basis of a modeled 2D crustal section. We propose hypothetically, that this crustal discontinuity could have played a role in controlling Paleogene extension at the hanging wall of an asymmetric rift basin, explaining the locus and development of the Doña Ana Basin. Finally, this work provides new information about Cenozoic structure and Paleozoic basement architecture, presumably derived from amalgamation history of one of the highest and more inaccessible regions of the Andes. © 2016 Elsevier Ltd

Registro:

Documento: Artículo
Título:Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data
Autor:Sánchez, M.A.; Winocur, D.; Álvarez, O.; Folguera, A.; Martinez, M.P.
Filiación:CONICET. Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan, Ruta 12, km. 17, CP, San Juan, 5407, Argentina
Inst. Estudios Andinos “Don Pablo Groeber”. Dep. Cs. Geol. FCEN. U.B.A., Buenos Aires, Argentina
Palabras clave:Aerial magnetic data; Central Andes; Paleogene basin architecture; Paleozoic basement structure.; Satellite gravity data; Terrestrial gravity data; crustal structure; discontinuity; gravity field; magnetic field; Paleozoic; satellite data; slab; three-dimensional modeling; Andes
Año:2017
Volumen:73
Página de inicio:153
Página de fin:167
DOI: http://dx.doi.org/10.1016/j.jsames.2016.12.007
Handle:http://hdl.handle.net/20.500.12110/paper_08959811_v73_n_p153_Sanchez
Título revista:Journal of South American Earth Sciences
Título revista abreviado:J. South Am. Earth Sci.
ISSN:08959811
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v73_n_p153_Sanchez

Referencias:

  • Álvarez, O., Giménez, M., Braitenberg, C., Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales (2013) Rev. de la Asoc. Geol. Argent., 70 (4), pp. 422-429
  • Assumpção, M., Bianchi, M., Julià, J., Dias, F., Sand França, G., Nascimento, R., Drouet, S., Lopes, A.E.V., Crustal thickness map of Brazil: data compilation and main features (2013) J. S. Am. Earth Sci., 43, pp. 74-85
  • Baldis, B.A., Beresi, M., Bordonaro, L., Vaca, A., Síntesis evolutiva de La Precordillera Argentina. 5° Congreso Latinoamericano de Geología (1982) Actas, 4, pp. 399-445
  • Baranov, V., Potential Fields and Their Transformations in Applied Geophysics. Geoexploration Monograph (1975), Series L, 6: Gerbruder Borntraeger, Berlin, Stuttgart, Germany; Bissig, T., Clark, A.H., Lee, J.K.W., Heather, K.B., The Cenozoic history of volcanism and hydrothermal alteration in the Central Andean flat-slab region: new 40Ar- 39Ar constrains from the El Indio-Pascua Au-(Ag, Cu) belt, 29°20′-30°30′ S (2001) Int. Geol. Rev., 43, pp. 312-340
  • Blakely, R.J., Potential Theory in Gravity and Magnetic Applications (1995), Cambridge University Press 441 New York; Briggs, I.C., Machine contouring using minimum curvature (1974) Geophysics, 39 (1), pp. 39-40
  • Caminos, R., Fauqué, L., Hoja geológica 2969-II tinogasta (2001) SEGEMAR, 1, p. 250. , Instituto de Geología y Recursos Minerales Provincia de La Rioja
  • Cardó, R., Díaz, I., Cegarra, M., Rodríguez, R., Heredia, N., Santamaría, G., Hoja geológica 3169-I: rodeo (1998) escala, 1, p. 250
  • Cardó, R., Díaz, I.N., Poma, S., Litvak, V.D., Santamaría, G., Limarino, C.O., Memoria hoja geológica 2969-III (2001) Malimán, 67. , Servicio Geológico Minero Argentino
  • Chai, Y., Hinze, W.J., Gravity inversion of an interface above which the density contrast varies exponentially with depth (1988) Geophysics, 53, pp. 837-845
  • Chakravarthi, V., Singh, S.B., Ashok Babu, G., Inver2dbase — a program to compute basement depths of density interfaces above which the density contrast varies with depth (2001) Comput. Geosciences, 27 (10), pp. 1127-1133
  • Chapin, D.A., A deterministic approach toward isostatic gravity residuals-A case study from South America (1996) Geophysics, 61, pp. 1022-1033
  • Charchaflié, D., Tosdal, R.M., Mortensen, J.K., Geologic framework of the Veladero high-sulfidation epithermal deposit area, Cordillera Frontal, Argentina (2007) Econ. Geol., 102, pp. 171-192
  • Charrier, R., Pinto, L., Rodriguez, M.P., Tectonostratigraphic evolution of the andean orogen in Chile (2007) Geology of Chile, pp. 21-116. , Chapter 3 W. Gibbons T. Moreno The Geological Society of London Special Publication
  • Chernicoff, C.J., Vujovich, G.I., Van Staal, C.R., Geophysical evidence for an extensive Pie de Palo Complex mafic–ultramafic belt, San Juan, Argentina (2009) J. S. Am. Earth Sci., 28 (4), pp. 325-332
  • Cordell, L., Zorin, Y.A., Keller, G.R., The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift (1991) J. Geophys. Res., 96, pp. 6557-6568
  • Dobrin, M., Introduction to Geophysical Prospecting (1976), p. 630. , third ed. McGraw Hill; Farías, M., Tectonique, Erosion Et Evolution Du Relief Dans Les Andes Du Chili Central Au Cours Du Neogene (2007), (Tesis Doctoral); Fauqué, L.E., Limarino, C.O., Vujovich, G.I., Cegarra, M., Escosteguy, L., Hoja Geológica 2969-IV Villa Unión (2002), (Provincias de La Rioja y San Juan); Fauqué, L., Memoria Hoja Geológica 2969-I (2010), (Pastillos. Servicio Geológico Minero Argentino); Furque, G., González, P., Caballé, M., Descripción de la hoja geológica 3169-II, San José de Jáchal (Provincias de San Juan y La Rioja) (1998), 259. , Servicio Geológico Minero Argentino, Boletín; Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results (2011) Geophys. J. Int., 186, pp. 45-58
  • Gimenez, M.E., Martinez, M.P., Introcaso, A., A crustal model based mainly on gravity data in the area between the Bermejo Basin and the Sierras de Valle Fértil, Argentina (2000) J. S. Am. Earth Sci., 13, pp. 275-286
  • Gimenez, M., Martinez, M.P., Introcaso, A., Análisis Hidrostático de la Cuenca del Bermejo (Provincia de San Juan- Argentina) (2001) Rev. de la Asoc. Geol. Argent., 56 (4), pp. 419-424
  • Gimenez, M., Martinez, P., Jordan, T., Ruiz, F., Lince Klinger, F., Gravity characterization of the La rioja valley basin, Argentina (2009) Geophysics, 74 (3), pp. B83-B94
  • Götze, C., Evans, B., Stress and temperature in the bending lithosphere as constrained by experimental rock mechanism (1979) Geophys. J. R. Astronomical Soc., 59, pp. 463-478
  • Götze, H.J., Kirchner, A., Interpretation of gravity and geoid in the central Andes between 20° and 29° S (1997) J. S. Am. Earth Sci., 10, pp. 179-188
  • Guspí, F., (1992) Three-dimensional Fourier gravity inversion arbitrary density contrast Geophys., 57, pp. 131-135
  • Hinze, W.J., von Frese, R.B., Saad, A.H., Gravity and Magnetic Exploration. Principles, Practices, and Applications (2013), Published in the United States of America by Cambridge University Press New York (Hardback); Hinze, W.J., Aiken, C., Brozena, J., Coakley, B., Dater, D., Flanagan, G., Forsberg, R., Winester, D., New standards for reducing gravity observations: The North American gravity database (2005) Geophysics, 70, pp. J25-J32
  • Hinze, W.J., Bouguer reduction density - Why 2.67? (2003) Geophysics, 68 (5), pp. 1559-1560
  • Introcaso, A., Guspí, F., Robles, A., Martinez, P., Miranda, S., Carta gravimétrica de Precordillera y Sierras Pampeanas entre 30° y 32° de Latitud Sur (1992), p. 178. , Actas Reunión de la Asociación Argentina de Geofísicos y Geodestas Buenos Aires; Introcaso, A., Pacino, M.C., Guspi, F., The Andes of Argentina and Chile: crustal configuration, isostasy, shortening and tectonic features from gravity data (2000) Temas de Geocienc., 5, p. 31
  • Introcaso, A., Martinez, M.P., Gimenez, M., Ruiz, F., Geophysical Study of the Valle Fértil Lineament between 28 ° 45' S and 31 ° 30' S: Boundary between the Cuyania and Pampia Terranes (2004) Cuyania, an Exotic Block to Gondwana, 7 (4), pp. 1117-1132. , Gondwana Research. Special Ed
  • Kane, M.F., A comprehensive system of terrain corrections using a digital computer (1962) Geophysics, 27 (4), pp. 455-462
  • Kostadinoff, J., Ferracutti, G.R., Bjerg, E.A., Interpretación de una sección gravi magnetométrica sobre la Pampa de las Invernadas, Sierra Grande de San Luis (2010) Rev. de la Asoc. Geol. Argent., 67, pp. 349-353
  • Li, X., Magnetic reduction-to-the-pole at low latitudes: practical considerations (2007) 2007 SEG Annual Meeting, , Society of Exploration Geophysicists
  • Litvak, V.D., Chernicoff, C.J., Poma, S.M., Localización de centros eruptivos mediante areomagnetometría en el sector central del Valle del Cura, San Juan, Argentina: implicancias para la evolución del arco/retroarco cenozoico (2005) Rev. Geol. de Chile, 32 (1), pp. 77-93
  • Litvak, V.D., El volcanismo Oligoceno superior – mioceno inferior del Grupo Doña Ana en la Alta Cordillera de San Juan (2009) Rev. de la Asoc. Geol. Argent., 64 (2), pp. 201-213
  • Llambias, E.J., Sato, A.M., El Batolito de Colangüil (29-31°S) cordillera frontal de Argentina: estructura y marco tectonico (1990) Andean Geol., 17 (1), pp. 89-108
  • MacLeod, I.N., Jones, K., Dai, T.F., 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes (1993) Explor. Geophys., 24 (3/4), pp. 679-688
  • Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Las unidades volcánicas y plutónicas del Cenozoico superior en la Alta Cordillera del Norte Chico (29°-31°S), Geología, alteración hidrotermal y mineralización (1984) Rev. Geol. de Chile, 21, pp. 11-51
  • Marín, G., Nullo, F., Geología y estructura del oeste de la Cordillera de la Ortiga, San Juan (1989) Rev. de la Asoc. Geol. Argent., 43 (2), pp. 153-163
  • Marquardt, D.W., An algorithm for least-squares estimation of nonlinear parameters (1963) J. Soc. Industrial Appl. Math., 11 (2), pp. 431-441
  • Martin, M.W., Clavero, J., Mpodozis, C., Cuitiño, L., Estudio Geológico de la Franja El Indio, Cordillera de Coquimbo: Servicio Nacional de Geología y Minería, Informe Registrado IR-95-6(1) (1995), pp. 1-238. , (Santiago); Martinez, M.P., Gimenez, M.E., Fuerte anomalía gravimétrica residual positiva en el Sistema de Famatina y su relación con paleosuturas. Explicaciones alternativas (2003) Rev. de la Asoc. Geol. Argent., 58 (2), pp. 176-186
  • Martinez, M.P., Gimenez, M.E., Bustos, G., Lince Klinger, F., Mallea, M., Jordan, T.J., Detección de saltos de basamento de la cuenca del valle de La Rioja - Argentina a partir de un modelo hidrostático (2006) GEOACTA, 31, pp. 1-9
  • Martínez, F., Arriagada, C., Valdivia, R., Deckart, K., Peña, M., Geometry and kinematics of the andean thick-skinned thrust systems: insights from the Chilean frontal cordillera (28°–28.5° S), central Andes (2015) J. S. Am. Earth Sci., 64, pp. 307-324
  • Mohr, P.J., Taylor, B.N., Adjusting the Values of the Fundamental Constants (2001); Morelli, C., Gantar, C., Honkasalon, T., McConnel, K., Tanner, J.G., Szabo, B., Uotila, U., Whalen, C.T., (1974) The international standardization net 1971 (IGSN71), 4. , IUGG-IAG Publ. Spec Paris
  • Moritz, H., Advanced physical geodesy (1980) Adv. Planet. Geol., 1
  • Mpodozis, C., Ramos, V.A., The Andes of Chile and Argentina (1989) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources, Circumpacific Council for Energy and Mineral Resources, Earth Sciences Series, 11, pp. 59-90. , G.E. Ericksen M.T. Cañas Pinochet J.A. Reinemud
  • Mulcahy, P., Chen, C., Kay, S.M., Brown, L.D., Isacks, B.L., Sandvol, E., Heit, B., Coira, B.L., Central Andean mantle and crustal seismicity beneath the Southern Puna plateau and the northern margin of the Chilean-Pampean flat slab (2014) Tectonics, 33, pp. 1636-1658
  • Nagy, D., The gravitational attraction of a right rectangular prism (1966) Geophysics, 31 (2), pp. 362-371
  • Nullo, F., Geología y estructura del área de Guanaco Zonzo y Veladero, oeste de la Cordillera de Zancarrón, San Juan. 3° Congreso Nacional de Geología Económica, Olavarría (1988) Actas, 2, pp. 501-515
  • Pacino, M.C., Introcaso, A., Modelo gravimétrico sobre el sistema de subducción Placa de Nazca Sudamericana en la latitud 33° Sur. V Congreso Geológico Chileno (1988) Actas (T2), pp. 77-89
  • Parker, R.L., The rapid calculation of potential anomalies (1972) Geophys. J. R. Astronomical Soc., 31, pp. 447-455
  • Phillips, J.D., Hansen, R.O., Blakely, R.J., The use of curvature in potential-field interpretation (2007) Explor. Geophys., 38 (100), pp. 111-119
  • Pérez-Gussinyé, M., Lowry, A.R., Phipps Morgan, J., Tassara, A., Effective elastic thickness variations along the Andean margin and their relationship to subduction geometry (2008) Geochem. Geophys. Geosystems, 9 (2). , http://dx.doi.org/10.1029/2007GC001786
  • Poisson, S.D., Memoire sur la theorie du magnetisme (1826), Memories de la l'acadamie royale des sciences de l'Institute de France Paris; Ramos, V.A., Jordan, T.E., Allmendinger, R., Mpodozis, C., Kay, S.M., Cortes, J.M., Palma, M., Paleozoic terranes of the central Argentine-Chilean Andes (1986) Tectonics, 5, pp. 855-880
  • Ramos, V.A., Page, R., Kay, S.M., Lapido, O., Delpino, D., Geología de la región del volcán Tórtolas, valle del Cura, provincia de San Juan. 10° Congreso Geológico Argentino and Simposium of Circumpacific Phanerozoic Granites, Tucumán (1987) Actas, 4, pp. 260-263
  • Ramos, V.A., Cristallini, E.O., Pérez, D.J., The Pampean flat-slab of the central Andes (2002) J. S. Earth Sci., 15, pp. 59-78
  • Reamer, S.K., Ferguson, J.F., Regularized two-dimensional Fourier gravity inversion method with application to Silent Canyon caldera, Nevada (1989) Geophysics, 54, pp. 486-496
  • Ruiz, F., Introcaso, A., La estructura profunda de la cuenca sedimentaria Ischigualasto - villa Unión: una interpretación tectónica a partir de datos de gravedad y magnetismo (Parte 1) (2000), 4, p. 70. , Temas de Geociencia UNR Editora Rosario; Sánchez, M., Klinger, F.L., Martinez, M.P., Alvarez, O., Ruiz, F., Weidmann, C., Folguera, A., (2015) Geophysical Characterization of the Upper Crust in the Transitional Zone Between the Pampean Flat Slab and the Normal Subduction Segment to the South (32-34° S): Andes of the Frontal Cordillera to the Sierras Pampeanas, 399 (1), pp. 167-182. , http://dx.doi.org/10.1144/SP399.1, Geological Society, London, Special Publications
  • Simpson, R.W., Jachens, R.C., Blakely, R.J., Saltus, R.W., A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies (1986) Journal of Geophysical Research: Solid Earth, 91 (B8), pp. 8348-8372
  • Somigliana, C., Sul campo gravitazionale esterno del geoide ellissoidico (1930); Talwani, M., Worzel, J.L., Landisman, M., Rapid gravity computations for two dimensional bodies with application to the Mendocino Submarine Fracture zone (1959) J. Geoph. Res., 64, pp. 49-58
  • Tassara, A., Swain, C., Hackney, R., Kirby, J., Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data (2007) Earth Planet. Sci. Lett., 253, pp. 17-36
  • Tassara, A., Yáñez, G., Relación entre el espesor elástico de la litófera y la segmentación tectónica del margen andino (15-47°S) (2003) Rev. Geol. de Chile, 30, pp. 159-186
  • Tassara, A., Echaurren, A., Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models (2012) Geophys. J. Int., 189, pp. 161-168
  • Telford, W., Geldart, L., Sheriff, R., Applied Geophysics (1990), 6, pp. 293-297. , Cambridge University Press Cambridge; Thiele, R., Reconocimiento geológico de la Alta Cordillera de Elqui. Universidad de Chile, Departamento de Geología (1964) Publicaciones, 27, pp. 1-73. , (Santiago)
  • Vicente, J.C., Dynamic paleogeography of Jurassic Andean Basin: pattern of transgression and localization of main straits through the magmatic arc (2005) Rev. de la Asoc. Geol. Argent., 15, pp. 221-250
  • Villella, J.C., Pacino, M.C., Interpolación gravimétrica para el cálculo de los números geopotenciales de la red altimétrica de Argentina en zonas de alta montaña (2010) Geoacta, 35 (2), pp. 13-26
  • Watts, A.B., Lamb, S.H., Fairhead, J.D., Dewey, J.F., Lithospheric flexure and bending of the central Andes (1995) Earth Planet. Sci. Lett., 134, pp. 9-20
  • Webring, M., SAKI; a Fortran program for generalized linear inversion of gravity and magnetic profiles US (1985) Geol. Surv., 85, p. 122
  • Wessel, P., Smith, W.H.F., New, improved version of the generic mapping tools released (1998) Eos Trans. AGU, 79, p. 579
  • Whitman, D., Isostatic residual gravity anomaly in the Central Andes: 12 to 29°. S: a guide to interpreting crustal structure and deeper lithospheric processes (1999) Int. Geol. Rev., 41, pp. 457-475
  • Wienecke, S., Braitenberg, C., Götze, H.J., A new analytical solution estimating the flexural rigidity in the Central Andes (2007) Geophys. J. Int., 169, pp. 789-794
  • Winocur, D., Ramos, V., Geología y Estructura del sector norte de la Alta Cordillera de la provincia de San Juan (2008) Congreso Geológico Argentino, 17, pp. 166-167
  • Winocur, D., Ramos, V., La Formación Valle del Cura: su edad y ambiente tectónico (2011) 18 Congreso Geológico Argentino
  • Winocur, D.A., Litvak, V.D., Ramos, V.A., (2015) Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension, 399 (1), pp. 109-130. , http://dx.doi.org/10.1144/SP399.2, Geological Society, London, Special Publications
  • Winocur, D.A., Litvak, V.D., Ramos, V.A., (2014) Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension, 399, pp. 109-130. , Geodynamic Processes in the Andes of Central Chile and Argentina. Geological Society, Special Publications London

Citas:

---------- APA ----------
Sánchez, M.A., Winocur, D., Álvarez, O., Folguera, A. & Martinez, M.P. (2017) . Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data. Journal of South American Earth Sciences, 73, 153-167.
http://dx.doi.org/10.1016/j.jsames.2016.12.007
---------- CHICAGO ----------
Sánchez, M.A., Winocur, D., Álvarez, O., Folguera, A., Martinez, M.P. "Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data" . Journal of South American Earth Sciences 73 (2017) : 153-167.
http://dx.doi.org/10.1016/j.jsames.2016.12.007
---------- MLA ----------
Sánchez, M.A., Winocur, D., Álvarez, O., Folguera, A., Martinez, M.P. "Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data" . Journal of South American Earth Sciences, vol. 73, 2017, pp. 153-167.
http://dx.doi.org/10.1016/j.jsames.2016.12.007
---------- VANCOUVER ----------
Sánchez, M.A., Winocur, D., Álvarez, O., Folguera, A., Martinez, M.P. Crustal structure of the high Andes in the North Pampean flat slab segment from magnetic and gravity data. J. South Am. Earth Sci. 2017;73:153-167.
http://dx.doi.org/10.1016/j.jsames.2016.12.007