Artículo

Álvarez, O.; Nacif, S.; Spagnotto, S.; Folguera, A.; Gimenez, M.; Chlieh, M.; Braitenberg, C. "Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes" (2015) Journal of South American Earth Sciences. 64:273-287
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Considerable improvements in the measurement of the Earth gravity field from GOCE satellite mission have provided global gravity field models with homogeneous coverage, high precision and good spatial resolution. In particular, the vertical gravity gradient (Tzz), in comparison to the classic Bouguer anomaly, defines more accurately superficial mass heterogeneities. Moreover, the correction of these satellite-derived data from the effect of Earth topographic masses by means of new techniques taking into account the Earth curvature, improves results in regional analyses. In a recent work we found a correlation between Tzz and slip distribution for the 2010 Maule Mw = 8.8 earthquake. In the present work, we derive the vertical gravity gradient from the last GOCE only model, corrected by the topographic effect and also by the sediments on depocenters of the offshore region at the Peru-Chile margin, in order to study a spatial relationship between different lobes of the gravity derived signal and the seismic sources of large megathrust earthquakes. In particular, we analyze this relation for the slip models of the 1996 Mw = 7.7 Nazca, 2001 Mw = 8.4 Arequipa, 2007 Mw = 8.0 Pisco events and for the slip models of the 2014 Mw = 8.2 Pisagua and Mw = 7.7 Iquique earthquakes from Schurr et al. (2014), including the previously analyzed 2010 Mw = 8.8 Maule event. Then we find a good correlation between vertical gravity gradients and main rupture zones, correlation that becomes even stronger as the event magnitude increases. Besides this, a gravity fall in the gravity gradient was noticed over the area of the main slip patches at least for the two years before 2014 Mw = 8.2 Pisagua and Mw = 7.7 Iquique earthquakes. Additionally, we found temporal variations of the gravity field after 2010 Mw = 8.8 Maule event, related to the main patches of the slip distribution, and coseismic deformation. Therefore, we analyzed vertical gravity gradient field variations as an indirect measure of the variable seismic coupling finding a potential relationship between Tzz and the seismic b-value. These relationships exemplify the strong potential of the satellite only derived models as a predictive tool to determine potential seismic energy released in a subduction segment, determining the potential size of a potential rupture zone, and in particular internal slip distribution that allows inferring coseismic displacement field at surface. © 2015 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes
Autor:Álvarez, O.; Nacif, S.; Spagnotto, S.; Folguera, A.; Gimenez, M.; Chlieh, M.; Braitenberg, C.
Filiación:Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan, Argentina
Consejo Nacional de Investigaciones Cientifícas y Técnicas, Argentina
Departamento de Física, Universidad Nacional de San Luis, San Luis, Argentina
INDEAN - Instituto de Estudios Andinos Don Pablo Groeber, Departamento de Cs. Geológicas, FCEN, Universidad de Buenos Aires, Argentina
Géoazur, IRD UR 082, CNRS UMR 6526, Université de Nice Sophia-Antipolis, Observatoire de la Côte d'Azur, Valbonne, France
Dipartimento di Matematica e Geoscienze, Universita di Trieste, Via Weiss 1, Trieste, 34100, Italy
Palabras clave:Continental margins; Earthquake interaction; Forecasting, and prediction; Megathrust earthquakes; South Andes; Subduction; Vertical gravity gradient; Bouguer anomaly; continental margin; coseismic process; earthquake magnitude; earthquake prediction; earthquake rupture; GOCE; gravity field; satellite mission; seismic source; subduction; Andes
Año:2015
Volumen:64
Página de inicio:273
Página de fin:287
DOI: http://dx.doi.org/10.1016/j.jsames.2015.09.014
Título revista:Journal of South American Earth Sciences
Título revista abreviado:J. South Am. Earth Sci.
ISSN:08959811
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08959811_v64_n_p273_Alvarez

Referencias:

  • Adam, J., Reuther, C.D., Crustal dynamics and active fault mechanics during subduction erosion. Application of frictional wedge analysis on to the North Chilean forearc (2000) Tectonophysics, 321, pp. 297-325
  • Alvarez, O., Gimenez, M.E., Braitenberg, C., Folguera, A., GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region (2012) Geophys. J. Int., 190 (2), pp. 941-959
  • Alvarez, O., Gimenez, M.E., Braitenberg, C., Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales (2013) Rev. Asoc. Geol. Arg., 70 (4), pp. 422-429
  • Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., Braitenberg, A., Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin (2014) Tectonophysics, 622, pp. 198-215. , http://dx.doi.org10.1016/j.tecto.2014.03.011
  • Alvarez, O., Gimenez, M.E., Martinez, M.P., LinceKlinger, F., Braitenberg, C., New insights into the Andean crustal structure between 32° and 34°S from GOCE satellite gravity data and EGM2008 model (2015) Geodynamic Processes in the Andes of Central Chile and Argentina, 399, pp. 183-202. , http://dx.doi.org/10.1144/SP399.3
  • Alvarez, O., Gimenez, M., Folguera, A., Spagnotto, S., Bustos, E., Baez, W., Braitenberg, C., New evidence about the subduction of the Copiapó ridge beneath South America, and its connection with the Chilean-Pampean flat slab, tracked by satellite GOCE and EGM2008 models (2015) J. Geodyn., (91). , http://dx.doi.org/10.1016/j.jog.2015.08.002, (in press), Geological Society, London, Special Publications
  • Amante, C., Eakins, B.W., (2009) ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, p. 19. , NOAA Technical Memorandum NESDIS NGDC-24, March 2009
  • Bangs, N.L., Cande, S.C., Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin (1997) Tectonics, 16 (3), pp. 489-505
  • Barthelmes, F., Definition of functionals of the geopotential and their calculation from spherical harmonic models (2009) Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM), , http://icgem.gfz-postdam.de, Scientific Technical Report, STR09/02, GFZ German Research Centre for Geosciences, Postdam, Germany, World Wide Web Address
  • Béjar-Pizarro, M., Carrizo, D., Socquet, A., Armijo, R., Barrientos, S., Bondoux, F., Bonvalot, S., Vigny, C., Asperities and barriers on the seismogenic zone in north Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data (2010) Geophys. J. Int., 183, pp. 390-406
  • Beresnev, I.A., Uncertainties in finite-fault slip inversions: to what extent to believe? (A critical review) (2003) Bull. Seismol. Soc. Am., 93, pp. 2445-2458
  • Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., Simons, M., Andean structural control on interseismic coupling in the North Chile subduction zone (2013) Nature Geosci, 6, pp. 462-467
  • Bilek, S.L., Influence of subducting topography on earthquake rupture (2007) The Seismogenic Zone of Subduction Thrust Faults, pp. 123-146. , Columbia University Press, T. Dixon, C. Moore (Eds.)
  • Bouman, J., Ebbing, J., Fuchs, M., Reference frame transformation of satellite gravity gradients and topographic mass reduction (2013) J. Geophys. Res. Solid Earth, 118 (2), pp. 759-774
  • Bouman, J., Fuchs, M., Ivins, E., van der Wal, W., Schrama, E., Visser, P., Horwath, M., Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry (2014) Geophys. Res. Lett., 41 (16), p. 5919
  • Braitenberg, C., Mariani, P., Ebbing, J., Sprlak, M., The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields (2011) Geol. Soc. Lond. Spec. Publ., 357, pp. 329-341. , Geological Society, London, D.J.J. Van Hinsbergen, S.J.H. Buiter, T.H. Torsvik, C. Gaina, S.J. Webb (Eds.) The Formation and Evolution of Africa: a Synopsis of 3.8 Ga of Earth History
  • Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh, W.D., EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission (2014) Geophys. Res. Lett., 41, pp. 8089-8099
  • Bürgmann, R., Warning signs of the Iquique earthquake (2014) Nature, 512, pp. 258-259
  • Chen, J.L., Wilson, C.R., Tapley, B.D., Grand, S., GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake (2007) Geophys. Res. Lett., 34, p. L13302
  • Chlieh, M., de Chabalier, J.B., Ruegg, J.C., Armijo, R., Dmowska, R., Campos, J., Feigl, K.L., Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations (2004) Geophys. J. Int., 158 (2), pp. 695-711
  • Chlieh, M., Avouac, J.P., Hjorleifsdottir, V., Song, T.R.A., Ji, C., Sieh, K., Sladen, A., Galetzka, J., Coseismic slip and afterslip of the great Mw 9.15 Sumatra-Andaman earthquake of 2004 (2007) Bull. Seismol. Soc. Am., 97, pp. S152-S173
  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J., Remy, D., Nocquet, J., Rolandone, F., Bonvalot, S., Interseismic coupling and seismic potential along the Central Andes subduction zone (2011) J. Geophys. Res., 116, p. B12405
  • Comte, D., Pardo, M., Reappraisal of great historical earthquakes in the Northern Chile and Southern Peru Seismic Gaps (1991) Nat. Hazards, 4, pp. 23-44
  • Contreras-Reyes, E., Carrizo, D., Control of high oceanic features ans subduction channel on earthquake ruptures along the Chile-Peru subduction zone (2011) Phys. Earth Planet. Int., 186, pp. 49-58
  • Contreras-Reyes, E., Jara, J., Grevemeyer, I., Ruiz, S., Carrizo, D., Abrupt change in the dip of the subducting plate beneath north Chile (2012) Nat. Geosci., 5, pp. 342-345
  • Cordell, L., Zorin, Y.A., Keller, G.R., The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift (1991) J. Geophys. Res., 96, pp. 6557-6568
  • De Gori, P., Lucente, F.P., Lombardi, A.M., Chiarabba, C., Montuori, C., Heterogeneities along the 2009 l'Aquila fault inferred by the b-value distribution (2012) Geophys. Res. Lett., 39, p. L15304
  • Delouis, B., Nocquet, J., Vallée, M., Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data (2010) Geophys. Res. Lett., 37
  • Delouis, B., Pardo, M., Legrand, D., Monfret, T., The Mw 7.7 Tocopilla earthquake of 14 November 2007 at the southern edge of the northern Chile seismic gap: rupture in the deep part of the coupled plate interface (2009) Bull. Seismol. Soc. Am., 99 (1), pp. 87-94
  • Divins, D.L., (2003) Total Sediment Thickness of the World's Oceans and Marginal Seas, , NOAA National Geophysical Data Center, Boulder, CO
  • Dorbath, L., Cisternas, A., Dorbath, C., Quantitative assessment of great earthquakes in Peru (1990) Bull. Seismol. Soc. Am., 80, pp. 551-576
  • Dreger, D., Kaverina, A., Seismic remote sensing for the earthquake source process and near-source strong shaking: a case study of the October 16, 1999 Hector Mine earthquake (2000) Geophys. Res. Lett., 27 (13), pp. 1941-1944
  • El-Isa, Z.H., Eaton, D.W., Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: classification and causes (2014) Tectonophysics, pp. 1-11
  • Fuller, C.W., Willett, S.D., Brandon, M.T., Formation of forearc basins and their influence on subduction zone earthquakes (2006) Geology, 34 (2), pp. 65-68. , 0
  • Fuchs, M.J., Bouman, J., Broerse, T., Visser, P., Vermeersen, B., Observing coseismic gravity change from the Japan Tohoku-Oki 2011earthquake with GOCE gravity gradiometry (2013) J. Geophys. Res., 118, pp. 5712-5721
  • Garzione, C., Hoke, G., Libarkin, J., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., Rise of the Andes (2008) Science, 320, p. 1304
  • Ghosh, A., Newman, A.V., Thomas, A.M., Farmer, G.T., (2008) Interface Locking along the Subduction Megathrust from b-value Mapping Near Nicoya Peninsula, 35, p. L01301. , Geophys. Res. Lett., Costa Rica
  • Grombein, T., Heck, B., Seitz, K., Optimized formulas for the gravitational field of a tesseroid (2013) J. Geod., 87, pp. 645-660
  • Gutenberg, R., Richter, C.F., Frequency of earthquakes in California (1944) Bull. Seismol. Soc. Am., 34, pp. 185-188
  • Hainzl, S., Zoller, G., Kurths, J., Earthquake clusters resulting from delayed rupture propagation in finite fault segments (2003) J. Geophys. Res., 108 (B1)
  • Han, S.C., Sauber, J., Luthcke, S., Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution (2010) Geophys. Res. Lett., 37, p. L23307
  • Han, S.C., Shum, C.K., Bevis, M., Ji, C., Kuo, C.Y., Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake (2006) Science, 313 (5787), pp. 658-666
  • Hartley, A.J., Jolley, E.J., Tectonic implications of late Cenozoic sedimentation from the coastal Cordillera of northern Chile (22-24°S) (1995) J. Geol. Soc. Lond., 152, pp. 51-63
  • Haschke, M., Günther, A., Melnick, D., Echtler, H., Reutter, K., Scheuber, E., Oncken, O., Central and southern andean tectonic evolution inferred from arc magmatism (2006) The Andes - Active Subduction Orogeny, pp. 337-353. , Frontiers in Earth Sciences, Springer, 16, O. Oncken, G. Chong, G. Franz, P. Giese, H.J. Götze, V. Ramos, M. Strecker, P. Wigger (Eds.)
  • Hayes, G.P., Herman, M.W., Barnhart, W.D., Furlong, K.P., Riquelme, S., Benz, H.M., Bergman, E., Samsonov, P., Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake (2014) Nature, 512, pp. 295-298
  • Heck, B., Seitz, K., A comparison of the tesseroid, prism and point mass approaches for mass reductions in gravity field modeling (2007) J. Geod., 81 (2), pp. 121-136
  • Heki, K., Matsuo, K., Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry (2010) Geophys. Res. Lett., 37, p. L24306
  • Hirose, F., Nakamura, A., Hasegawa, A., B-value variation associated with the rupture of asperities - spatial and temporal distributions of b-value East off NE Japan (2002) Zisin II, 55, pp. 249-260. , (in Japanese)
  • Holtkamp, S., Brudzinski, M.R., Circum pacific earthquake swarms (2011) Earth Planet. Sci. Lett., 305, pp. 215-225
  • Hofmann-Wellenhof, B., Moritz, H., (2006) Phys. Geod., p. 286. , Springer, Berlin
  • Imoto, M., Changes in the magnitude-frequency b-value prior to large (M = 6.0) earthquakes in Japan (1991) Tectonophysics, 193, pp. 311-325
  • Ishimoto, M., Iida, K., Observations of earthquakes registered with the microseismograph constructed recently (1939) Bull. Earthq. Res. Inst., 17, pp. 443-478
  • Janak, J., Sprlak, M., New software for gravity field modelling using spherical armonic (2006) Geod. Cartog. Hor., 52, pp. 1-8. , (in Slovak)
  • Kausel, E., Los terremotos de agosto de 1868 y mayo de 1877 que afectaron el sur del PeŠŕu y norte de Chile (1986) Bol. Acad. Chil. Cienc., 3, pp. 8-14
  • Kay, S., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening subduction erosion and magmatism in the south-central Andes (2005) Bull. Geol. Soc. Am., 117, pp. 67-88
  • Kelleher, J.A., Rupture zones of large South American earthquakes and some predictions (1972) J. Geophys. Res., 77, pp. 2087-2103
  • Kendrick, E., Bevis, M., Smalley, R., Brooks, B., Barriga, R., Lauri, E., The Nazca - south America Euler vector and its rate of change (2003) J. South Am. Earth Sci., 16, pp. 125-131
  • Lamb, S., Davis, P., Cenozoic climate change as a possible cause for the rise of the Andes (2003) Nature, 425, pp. 792-797
  • Lay, T., Ammon, C.J., Kanamori, H., Koper, K.D., Sufri, O., Hutko, A.R., Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw=8.8) earthquake (2010) Geophys. Res. Lett., 37
  • Lay, T., Yue, H., Brodsky, E.E., An, C., The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence (2014) Geophys. Res. Lett., 41, pp. 3818-3825
  • Lee, S.H., Ma, K.F., Chen, H.W., Effects of fault geometry and slip style on near-fault static displacements caused by the 1999 Chi-Chi, Taiwan earthquake (2006) Earth Planet. Sci. Lett., 241 (1-2), pp. 336-350
  • Lei, X.L., Masuda, K., Nishizawa, O., Jouniaux, L., Liu, L., Ma, W., Satoh, T., Kusunose, K., Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rocks (2004) J. Struct. Geol., 26, pp. 247-258
  • Li, Q., Cen, J., Yu, L., Hao, B., Time and space scanning of the b-value a method for monitoring the development of catastrophic earthquakes (1978) Acta Geophys. Sin., 21, pp. 101-125
  • Li, X., Vertical resolution: gravity versus vertical gravity gradient (2001) Lead. Edge, 20, pp. 901-904
  • Lindquist, K., Engle, K., Stahlke, D., Price, E., Global topography and bathymetry grid improves research efforts (2004) EOS, 85 (19)
  • Llenos, A.L., Mc Guire, J.J., Influence of fore-arc structure on the extent of great subduction zone earthquakes (2007) J. Geophys. Res., 112, p. B09301
  • Lomnitz, C., Major earthquakes of Chile: a historical survey, 1535-1960 (2004) Seismol. Res. Lett., 75, pp. 368-378
  • Maksymowicz, A., Tréhuc, A., Contreras-Reyes, E., Ruiz, S., Density-depth model of the continental wedge at the maximum slip segment of the Maule Mw8.8 megathrust earthquake (2015) Earth Planet. Sci. Lett., 409, pp. 265-277. , http://dx.doi.org/10.1016/j.epsl.2014.11.005
  • Metois, M., Socquet, A., Vigny, C., Carrizo, D., Peyrat, S., Delorme, A., Maureira, E., Ortega, I., Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling (2013) Geophys. J. Int., 194, pp. 1283-1294
  • Moreno, M., Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Vilotte, J.P., Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake (2014) Nature, 512, pp. 299-302
  • Moreno, M.S., Melnick, D., Rosenau, M., Baez, J., Klotz, J., Oncken, O., Tassara, A., Hase, H., Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake (2012) Earth Planet. Sc. Lett., 321, pp. 152-165
  • Nishenko, S.P., Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America. A quantitative reappraisal (1985) J. Geophys. Res., 90, pp. 3589-3615
  • Ohnaka, M., Mogi, K., Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure (1982) J. Geophys. Res., 87 (B5), pp. 3873-3884
  • Page, M.T., Custódio, S., Archuleta, R.J., Carlson, J.M., Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts (2009) J. Geophys. Res., 114, p. B01314
  • Pail, R., Bruisma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.D., Höck, E., Tscherning, C.C., First GOCE gravity field models derived by three different approaches (2011) J. Geod., 85, pp. 819-843
  • Panet, I., Mikhailov, V., Diament, M., Pollitz, F., King, G., de Viron, O., Holschneider, M., Lemoine, J.-M., Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity (2007) Geophys. J. Int., 171, pp. 177-190
  • Peltzer, G., Crampé, F., Rosenb, P., The Mw 7.1, Hector Mine, California earthquake: surface rupture, surface displacement field, and fault slip solution from ERS SAR data (2001) Earth Planet. Sci. Lett., 333, pp. 545-555
  • Peyrat, S., Madariaga, R., Buforn, E., Campos, J., Asch, G., Vilotte, J.P., Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong motion data (2010) Geophys. J. Int., 182, pp. 1411-1430
  • Pollitz, F.F., Brooks, B., Tong, X., Bevis, M.G., Foster, J.H., Bürgmann, R., Smalley, R.J., Blanco, M., Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake (2011) Geophys. Res. Lett., 38, p. L09309
  • Pritchard, M.E., Norabuena, E.O., Ji, C., Boroschek, R., Comte, D., Simons, M., Dixon, T.H., Rosen, P.A., Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes (2007) J. Geophys. Res., 112, p. B03307
  • Ranero, C., von Huene, R., Weinrebe, W., Reichert, C., Tectonic processes along the Chile convergent margin (2006) The Andes - Active Subduction Orogeny. Frontiers in Earth Science Series, pp. 91-121. , Springer-Verlag, Berlin Heidelberg New York, O. Oncken, G. Chong, G. Franz, P. Giese, H.J. Götze, V.A. Ramos, M.R. Strecker, P. Wigger (Eds.)
  • Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Campos, J., Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw=8.1 earthquake (2014) Science, 345 (6201), pp. 1165-1169
  • Rummel, R., Yi, W., Stummer, C., GOCE gravitational gradiometry (2011) J. Geod., 85 (11), pp. 777-790
  • Sallares, V., Ranero, C.R., Structure of the North Chile erosional convergent margin off Antofagasta (23°30' S) (2005) J. Geophys. Res., 110
  • Sammonds, P.R., Meredith, P.G., Main, I.G., Role of pore fluids in the generation of seismic precursors to shear fracture (1992) Nature, 359, pp. 228-230
  • Scholl, D.W., Christensen, M.N., von Huene, R., Marlow, M.S., Peru-Chile trench sediments and sea-floor spreading (1970) Geol. Soc. Am. Bull., 81, pp. 1339-1360
  • Scholz, C.H., The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes (1968) Bull. Seismol. Soc. Am., 58, pp. 388-415
  • Schorlemmer, D., Wiemer, S., Wyss, M., Variations in earthquake-size distribution across different stress regimes (2005) Nature, 437, pp. 539-542
  • Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Vilotte, J.P., Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake (2014) Nature, 512, pp. 299-302
  • Shao, G., Li, X., Liu, Q., Zhao, X., Yano, T., Ji, C., (2010) Preliminary Slip Model of the Feb 27, 2010 Mw= 8.9 Maule, Chile Earthquake, , http://www.geol.uvsb.edu/faculty/ji/big_earthquakes/2010/02/27/chile_2_27.html
  • Sladen, A., Tavera, H., Simons, M., Avouac, J.P., Konca, A.O., Perfettini, H., Audin, L., Ortega, F., Source model of the 2007 Mw 8.0 Pisco, Peru earthquake: implications for seismogenic behavior of subduction megathrusts (2010) J. Geophys. Res., 115 (B02405)
  • Smith, W.D., The b-value as an earthquake precursor (1981) Nature, 289, pp. 136-139
  • Smith, W.D., Evidence for precursory changes in the frequency-magnitude b-value (1986) Geophys. J. Res. Astron. Soc., 86, pp. 815-838
  • Sobiesiak, M.M., Meyer, U., Schmidt, S., Götze, H.J., Krawczyk, C., Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta (2007) J. Geophys. Res., 112 (B12308)
  • Song, T.R., Simons, M., Large trench-parallel gravity variations predict seismogenic behavior in subduction zones (2003) Science, 301, pp. 630-633
  • Sparkes, R., Tilmann, F., Hovius, N., Hillier, J., Subducted seafloor relief stops rupture in South American great earthquakes: implications for rupture behaviour in the 2010 Maule, Chile earthquake (2010) Earth Planet. Sci. Lett., 298, pp. 89-94
  • Stern, C.R., Role of subduction erosion in the generation of Andean magmas (1991) Geology, 19, pp. 78-81
  • Tapley, B.D., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M., GRACE measurements of mass variability in the earth system science (2004) Science, 305, pp. 503-505
  • Tassara, A., Control of forearc density structure on megathrust shear strength along the Chilean subduction zone (2010) Tectonophysics, 495, pp. 34-47
  • Tassara, A., Götze, H., Schmidt, S., Hackney, R., Three-dimensional density model of the Nazca plate and the Andean continental margin (2006) J. Geophys. Res., 111 (B09404)
  • Tscherning, C.C., Computation of the second-order derivatives of the normal potential based on the representation by a legendre series (1976) Manuscr. Geod., 1, pp. 71-92
  • Tsukakoshi, Y., Shimazaki, K., Decreased b-value prior to the M 6.2 Northern Miyagi, Japan, earthquake of 26 July 2003 (2008) Earth Planets Space, 60, pp. 915-924
  • Uieda, L., Ussami, N., Braitenberg, C.F., Computation of the gravity gradient tensor due to topographic masses using tesseroids (2010) Eos Trans. AGU, 91 (26). , http://code.google.com/p/tesseroids/
  • Völker, D., Wiedicke, M., Ladage, S., Gaedicke, C., Reichert, C., Rauch, K., Kramer, W., Heubeck, C., Latitudinal variation in sedimentary processes in the Peru-Chile trench off Central Chile (2006) The Andes- Active Subduction Orogeny, Frontiers in Earth Science Series, Part II, pp. 193-216. , Springer-Verlag, Berlin Heidelberg New York, Oncken (Ed.), Meeting America Supply, Abstract G22A-04. World Wide Web Address
  • von Huene, R., Scholl, D.W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust (1991) Rev. Geophys., 29, pp. 279-316
  • Wang, L., Shum, C.K., Simons, F.J., Tapley, B., Dai, C., Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry (2012) Geophys. Res. Lett., 39, p. L07301
  • Wells, R.E., Blakely, R.J., Sugiyama, Y., Scholl, D.W., Dinterman, P.A., Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? (2003) J. Geophys. Res., 108 (B10), pp. 2507-2536
  • Wessel, P., Smith, W.H.F., New, improved version of the generic mapping tools released (1998) Eos Trans. AGU, 79 (47), p. 579
  • Whittaker, J., Goncharov, A., Williams, S., Müller, R.D., Leitchenkov, G., Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean (2013) Geochem. Geophys. Geosys., 14, pp. 3297-3305
  • Wild-Pfeiffer, F., A comparison of different mass element for use in gravity gradiometry (2008) J. Geod., 82, pp. 637-653
  • Wyss, M., Lee, W.H.K., (1973) Proc. Conf in Tectonic Problems of the San Andreas Fault System, 13, pp. 24-42. , Stanford University
  • Wyss, M., Sammis, C.G., Nadeau, R.M., Wiemer, S., Fractal dimension and b-value on creeping and locked patches of the San Andreas Fault near Parkfield, California (2004) Bull. Seismol. Soc. Am., 94 (2), pp. 410-421
  • Yamashita, T., Knopoff, L., Model for intermediate-term precursory clustering of earthquakes (1992) J. Geophys. Res., 97, pp. 19873-19879

Citas:

---------- APA ----------
Álvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M. & Braitenberg, C. (2015) . Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes. Journal of South American Earth Sciences, 64, 273-287.
http://dx.doi.org/10.1016/j.jsames.2015.09.014
---------- CHICAGO ----------
Álvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., et al. "Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes" . Journal of South American Earth Sciences 64 (2015) : 273-287.
http://dx.doi.org/10.1016/j.jsames.2015.09.014
---------- MLA ----------
Álvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., et al. "Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes" . Journal of South American Earth Sciences, vol. 64, 2015, pp. 273-287.
http://dx.doi.org/10.1016/j.jsames.2015.09.014
---------- VANCOUVER ----------
Álvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., et al. Gradients from GOCE reveal gravity changes before Pisagua Mw = 8.2 and Iquique Mw = 7.7 large megathrust earthquakes. J. South Am. Earth Sci. 2015;64:273-287.
http://dx.doi.org/10.1016/j.jsames.2015.09.014