Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This article discusses the feedbacks between soil moisture and precipitation during the early stages of the South American monsoon. The system achieves maximum precipitation over the southern Amazon basin and the Brazilian highlands during the austral summer. Monsoon changes are associated with the large-scale dynamics, but during its early stages, when the surface is not sufficiently wet, soil moisture anomalies may also modulate the development of precipitation. To investigate this, sensitivity experiments to initial soil moisture conditions were performed using month-long simulations with the regional mesoscale Eta model. Examination of the control simulations shows that they reproduce all major features and magnitudes of the South American circulation and precipitation patterns, particularly those of the monsoon. The surface sensible and latent heat fluxes, as well as precipitation, have a diurnal cycle whose phase is consistent with previous observational studies. The convective inhibition is smallest at the time of the precipitation maximum, but the convective available potential energy exhibits an unrealistic morning maximum that may result from an early boundary layer mixing. The sensitivity experiments show that precipitation is more responsive to reductions of soil moisture than to increases, suggesting that although the soil is not too wet, it is sufficiently humid to easily reach levels where soil moisture anomalies stop being effective in altering the evapotranspiration and other surface and boundary layer variables. Two mechanisms by which soil moisture has a positive feedback with precipitation are discussed. First, the reduction of initial soil moisture leads to a smaller latent heat flux and a larger sensible heat flux, and both contribute to a larger Bowen ratio.' The smaller evapotranspiration and increased sensible heat flux lead to a drier and warmer boundary layer, which in turn reduces the atmospheric instability. Second, the deeper (and drier) boundary layer is related to a stronger and higher South American low-level jet (SALIJ). However, because of the lesser moisture content, the SALLJ carries less moisture to the monsoon region, as evidenced by the reduced moisture fluxes and their convergence. The two mechanisms - reduced convective instability and reduced moisture flux convergence - act concurrently to diminish the core monsoon precipitation. © 2008 American Meteorological Society.

Registro:

Documento: Artículo
Título:How does soil moisture influence the early stags of the south American monsoon?
Autor:Collini, E.A.; Berbery, E.H.; Barros, V.R.; Pyle, M.E.
Filiación:Argentine Navy Weather Service, Argentine Hydrographic Service, Buenos Aires, Argentina
Department of Atmospheric and Oceanic Science, ESSIC, University of Maryland College Park, College Park, MD 20742-2425, United States
Department of Atmospheric and Oceanic Sciences, University of Buenos Aires, Buenos Aires, Argentina
National Centers for Environmental Prediction, Camp Springs, MD, United States
Palabras clave:Atmospheric thermodynamics; Boundary layers; Evapotranspiration; Heat flux; Latent heat; Soil moisture; Convective inhibition; Monsoon; Surface sensible; Precipitation (meteorology); boundary layer; Bowen ratio; latent heat flux; monsoon; precipitation (climatology); sensible heat flux; sensitivity analysis; soil moisture; South America
Año:2008
Volumen:21
Número:2
Página de inicio:195
Página de fin:213
DOI: http://dx.doi.org/10.1175/2007JCLI1846.1
Título revista:Journal of Climate
Título revista abreviado:J. Clim.
ISSN:08948755
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08948755_v21_n2_p195_Collini

Referencias:

  • Barros, V., Doyle, M., González, M., Camilloni, I., Bejaran, R., Caffera, R.M., Climate variability over subtropical South America and the South American monsoon: A review (2002) Meteorologica, 27, pp. 33-57
  • Beljaars, A.C.M., Viterbo, P., Miller, M.J., Betts, A.K., The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies (1996) Mon. Wea. Rev, 124, pp. 362-383
  • Berbery, E.H., Collini, E.A., Springtime precipitation and water vapor flux over southeastern South America (2000) Mon. Wea. Rev, 128, pp. 1328-1346
  • Berbery, E.H., Barros, V.R., The hydrologic cycle of the La Plata basin in South America (2002) J. Hydrometeor, 3, pp. 630-645
  • Berbery, E.H., Collini, E.A., Silva, V., Peña, M., Lettenmaier, D.L., Barros, V.R., Pyle, M., The water cycle of La Plata basin at regional scales (2004) GEWEX News, 14 (1), pp. 4-5. , International GEWEX Project Office, Silver Spring, MD
  • Betts, A.K., Miller, M.J., A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets (1986) Quart. J. Roy. Meteor. Soc, 112, pp. 693-710
  • Betts, A.K., Jakob, C., Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data (2002) J. Geophys. Res, 107, p. 8045. , doi:10.1029/2001JD000427
  • Betts, A.K., Viterbo, P., Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40 (2005) J. Geophys. Res, 110, pp. D14108. , doi:10.1029/2004JD005702
  • Betts, A.K., Ball, J.H., Beljaars, A.C.M., Miller, M.J., Viterbo, P., The land surface-atmosphere interaction: A review based on observational and global modeling perspectives (1996) J. Geophys. Res, 101 (D3), pp. 7209-7226
  • Betts, A.K., Fuentes, J.D., Garstang, M., Ball, J.H., Surface diurnal cycle and boundary layer structure over Rondônia during the rainy season (2002) J. Geophys. Res, 107, p. 8065. , doi:10.1029/ 2001JD000356
  • Black, T.L., The new NMC mesoscale Eta Model: Description and forecast examples (1994) Wea. Forecasting, 9, pp. 265-278
  • Bosilovich, M.G., Sun, W.-Y., Numerical simulation of the 1993 of the midwestern flood: Land-atmosphere interactions (1999) J. Climate, 12, pp. 1490-1505
  • Carvalho, L.M.V., Jones, C., Liebmann, B., The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall (2004) J. Climate, 17, pp. 88-108
  • Chou, S.C., Tanajura, C.A.S., Xue, Y., Nobre, C.A., Validation of the coupled Eta/SSiB model over South America (2002) J. Geophys. Res, 107, p. 8088. , doi:10.1029/2000JD000270
  • de Goncalves, L.G.G., Shuttleworth, W.J., Chou, S.C., Xue, Y., Houser, P.R., Toll, D.L., Marengo, J., Rodell, M., Impact of different initial soil moisture fields on Eta model weather forecasts for South America (2006) J. Geophys. Res, 111, pp. D17102. , doi:10.1029/ 2005JD006309
  • Delworth, T., Manabe, S., The influence of potential evaporation on the variabilities of simulated soil wetness and climate (1988) J. Climate, 1, pp. 523-547
  • Delworth, T., Manabe, S., The influence of soil wetness on near-surface atmospheric variability (1989) J. Climate, 2, pp. 1447-1462
  • Diaz, A., Aceituno, P., Atmospheric circulation anomalies during episodes of enhanced and reduced convective cloudiness over Uruguay (2003) J. Climate, 16, pp. 3171-3185
  • Doyle, M.E., Barros, V.R., Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic (2002) J. Climate, 15, pp. 3394-3410
  • Ek, M.B., Mitchell, K.E., Lin, Y., Grunmann, P., Rogers, E., Gayno, G., Koren, V., Tarpley, J.D., Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model (2003) J. Geophys. Res, 108, p. 8851. , doi:10.1029/2002JD003296
  • Eltahir, E.A.B., A soil moisture-rainfall feedback mechanism. 1. Theory and observations (1998) Water Resour. Res, 34, pp. 765-776
  • Fan, Y., Van den Dool, H., Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present (2004) J. Geophys. Res, 109, pp. D10102. , doi:10.1029/ 2003JD004345
  • Fu, R., Zhu, B., Dickinson, R.E., How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? (1999) J. Climate, 12, pp. 1306-1321
  • Gan, M.A., Kousky, V.E., Ropelewski, C.F., The South America monsoon circulation and its relationship to rainfall over west-central Brazil (2004) J. Climate, 17, pp. 47-66
  • Garratt, J.R., Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments - A review (1993) J. Climate, 6, pp. 419-448
  • Regions of strong coupling between soil moisture and precipitation (2004) Science, 305, pp. 1138-1140. , GLACE Team
  • Hahmann, A.N., Dickinson, R.E., RCCM2-BATS model over tropical South America: Applications to tropical deforestation (1997) J. Climate, 10, pp. 1944-1964
  • Herdies, D.L., da Silva, A., Silva Dias, M.A.F., Nieto Ferreira, R., Moisture budget of the bimodal pattern of the summer circulation over South America (2002) J. Geophys. Res, 107, p. 8075. , doi:10.1029/2001JD000997
  • Horel, J.D., Hahmann, A.N., Geisler, J., An investigation of the annual cycle of convective activity over the tropical Americas (1989) J. Climate, 2, pp. 1388-1403
  • Kalnay, E., The NCEP/NCAR 40-Year Reanalysis Project (1996) Bull. Amer. Meteor. Soc, 77, pp. 437-471
  • Kodama, Y.M., Large-scale common features of the subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part I: Characteristics of subtropical frontal zones (1992) J. Meteor. Soc. Japan, 70, pp. 813-836
  • Koster, R.D., Suarez, M.J., Heiser, M., Variance and predictability of precipitation at seasonal-to-interannual timescales (2000) J. Hydrometeor, 1, pp. 26-46
  • Kumar, A., Barnston, A.G., Hoerling, M.P., Seasonal predictions, probabilistic verifications, and ensemble size (2001) J. Climate, 14, pp. 1671-1676
  • Janjić, Z.I., The step-mountain coordinate: Physical package (1990) Mon. Wea. Rev, 118, pp. 1429-1443
  • Janjić, Z.I., The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes (1994) Mon. Wea. Rev, 122, pp. 927-945
  • Jones, C., Carvalho, L.M.V., Active and break phases in the South American monsoon system (2002) J. Climate, 15, pp. 905-914
  • Labraga, J.C., Frumento, O., López, M., The atmospheric water vapor cycle in South America and the tropospheric circulation (2000) J. Climate, 13, pp. 1899-1915
  • Lenters, J.D., Cook, K.H., On the origin of the Bolivian high and related circulation features of the South American climate (1997) J. Atmos. Sci, 54, pp. 656-678
  • Li, W., Fu, R., Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF Re-Analysis (2004) J. Climate, 17, pp. 2637-2651
  • Liebmann, B., Kiladis, G.N., Marengo, J.A., Ambrizzi, T., Glick, J.D., Submonthly convective variability over South America and the South Atlantic convergence zone (1999) J. Climate, 12, pp. 1877-1891
  • Liebmann, B., Vera, C.S., Saulo, A.C., Carvalho, L.M.V., Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone (2004) J. Climate, 17, pp. 3829-3842
  • Marengo, J.A., Soares, W.R., Saulo, C., Nicolini, M., Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: Characteristics and temporal variability (2004) J. Climate, 17, pp. 2261-2280
  • McCorcle, M.D., Simulation of surface-moisture effects on the Great Plains low-level jet (1988) Mon. Wea. Rev, 116, pp. 1705-1720
  • Mesinger, F., Dynamics of limited-area models: Formulation and numerical methods (1997) Meteor. Atmos. Phys, 63, pp. 3-14
  • Nicolini, M., Saulo, A.C., Modeled Chaco low-level jets and related precipitation patterns during the 1997-1998 warm season (2006) Meteor. Atmos. Phys, 94, pp. 129-143
  • Nogués-Paegle, J., Mo, K.C., Alternating wet and dry conditions over South America during summer (1997) Mon. Wea Rev, 125, pp. 279-291
  • Nogués-Paegle, J., Progress in Pan American CLIVAR research: Understanding the South American Monsoon (2002) Meteorologica, 27, pp. 3-32
  • Nogués-Paegle, J., Berbery, E.H., Collini, E.A., Saulo, C., An evaluation of the Eta model during SALLJEX (2006) Proc. Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, pp. 51-56. , Foz do Iguaçu, Brazil, INPE
  • Paegle, J., Mo, K.C., Nogués-Paegle, J., Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods (1996) Mon. Wea. Rev, 124, pp. 345-361
  • Rodwell, M.J., Hoskins, B.J., Subtropical anticyclones and summer monsoons (2001) J. Climate, 14, pp. 3192-3211
  • Satyamurty, P., Ferreira, C.C., Gan, M.A., Cyclonic vortices over South America (1990) Tellus, 42 A, pp. 194-201
  • Saulo, A.C., Nicolini, M., Chou, S.C., Model characterization of the South American low-level flow during the 1997-1998 spring-summer season (2000) Climate Dyn, 16, pp. 867-881
  • Schaake, J.C., An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS) (2004) J. Geophys. Res, 109. , DO1S90, doi:10.1029/2002JD003309
  • Seth, A., Rojas, M., Simulation and sensitivity in a nested modeling system for South America. Part I: Reanalyses boundary forcing (2003) J. Climate, 16, pp. 2437-2453
  • Silva, V.B.S., Berbery, E.H., Intense rainfall events affecting the La Plata basin (2006) J. Hydrometeor, 7, pp. 769-787
  • Vera, C., The South American Low-Level Jet Experiment (2006) Bull. Amer. Meteor. Soc, 87, pp. 63-77
  • Warner, T.T., Peterson, R.A., Treadon, R.E., A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction (1997) Bull. Amer. Meteor. Soc, 78, pp. 2599-2617
  • Xie, P., Arkin, P.A., Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs (1997) Bull. Amer. Meteor. Soc, 78, pp. 2539-2558
  • Xue, Y., de Sales, F., Li, W.-P., Mechoso, C.R., Nobre, C.A., Juang, H.-M., Role of land surface processes in South American monsoon development (2006) J. Climate, 19, pp. 741-762
  • Zhong, S., Fast, J.D., Bian, X., A case study of the Great Plains low-level-jet using wind proffler network data and a high-resolution mesoscale model (1996) Mon. Wea. Rev, 124, pp. 785-806
  • Zhou, J., Lau, K.M., Does a monsoon climate exist over South America? (1998) J. Climate, 11, pp. 1020-1040

Citas:

---------- APA ----------
Collini, E.A., Berbery, E.H., Barros, V.R. & Pyle, M.E. (2008) . How does soil moisture influence the early stags of the south American monsoon?. Journal of Climate, 21(2), 195-213.
http://dx.doi.org/10.1175/2007JCLI1846.1
---------- CHICAGO ----------
Collini, E.A., Berbery, E.H., Barros, V.R., Pyle, M.E. "How does soil moisture influence the early stags of the south American monsoon?" . Journal of Climate 21, no. 2 (2008) : 195-213.
http://dx.doi.org/10.1175/2007JCLI1846.1
---------- MLA ----------
Collini, E.A., Berbery, E.H., Barros, V.R., Pyle, M.E. "How does soil moisture influence the early stags of the south American monsoon?" . Journal of Climate, vol. 21, no. 2, 2008, pp. 195-213.
http://dx.doi.org/10.1175/2007JCLI1846.1
---------- VANCOUVER ----------
Collini, E.A., Berbery, E.H., Barros, V.R., Pyle, M.E. How does soil moisture influence the early stags of the south American monsoon?. J. Clim. 2008;21(2):195-213.
http://dx.doi.org/10.1175/2007JCLI1846.1