Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The kinetics of the reactions of 2,4-dinitrofluorobenzene (DNFB) and 2,4-dinitrochlorobenzene (DNClB) with 2-guanidinobenzimidazole (2-GB) at 40±0.2°C in dimethylsulphoxide (DMSO), toluene, and in toluene-DMSO mixtures, and with 1-(2-aminoethyl)piperidine (2-AEPip) and N-(3-aminopropyl) morpholine (3-APMo) in toluene at 25±0.2°C were studied under pseudo first-order conditions. For the reactions of 2-GB carried out in pure DMSO, the second-order rate coefficients were independent of the amine concentration. In contrast, the reactions of 2-GB with DNFB in toluene, showed a kinetic behaviour consistent with a base-catalysed decomposition of the zwitterionic intermediate. These results suggest an intramolecular H-bonding of 2-GB in toluene, which is not present in DMSO. To confirm this interpretation the reactions were studied in DMSO-toluene mixtures. Small amounts of DMSO produce significant increase in rate that is not expected on the basis of the classical effect of a dipolar aprotic medium; the effect is consistent with the formation of a nucleophile/co-solvent mixed aggregate. For the reactions of 3-APMo with both substrates in toluene, the second-order rate coefficients, kA, show a linear dependence on the [amine]. 3-APMo is able to form a six-membered ring by an intramolecular H-bond which prevents the formation of self-aggregates. In contrast, a third order was observed in the reactions with 2-AEPip: these results can be interpreted as a H-bonded homo-aggregate of the amine acting as a better nucleophile than the monomer. Most of these results can be well explained within the frame of the 'dimer nucleophile' mechanism. The shown polyamines were selected to examine its ability to form inter- or intra-molecular hydrogen-bonds. The reactions of 2-AEPip with both halodinitro-benzenes in toluene are third order in amine, consistently with the dimer nucleophile mechanism. On the contrary, the intramolecularly hydrogen-bonded structures of 2-GB and 3-APMo prevent formation of dimeric aggregates, the reactions are 2nd.order in amine as expected for the classical base-catalysed ANS. Copyright © 2010 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:Hydrogen-bonded nucleophile effects in ANS: The reactions of 1-chloro and 1-fluoro-2,4-dinitrobenzene with 2-guanidinobenzimidazole, 1-(2-aminoethyl) piperidine and N-(3-aminopropyl)morpholine in aprotic solvents
Autor:Alvaro, C.E.S.; Ayala, A.D.; Nudelman, N.S.
Filiación:Depto Química, Facultad de Ingeniería, Universidad Nacional Del Comahue, Buenos Aires 1400 (8300), Neuquén, Argentina
Instituto de Investigaciones en Química Orgánica, Universidad Nacional Del sur, Avda Alem 1253, (8000), Bahía Blanca, Argentina
Depto Química Orgánica, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Palabras clave:aprotic solvents; aromatic nucleophilic substitution; dimer nucleophile mechanism; hydrogen bond; hydrogen-bonded nucleophiles; mixed aggregates; Aprotic solvents; Aromatic nucleophilic substitution; dimer nucleophile mechanism; hydrogen-bonded nucleophiles; Mixed aggregates; Aggregates; Aromatic compounds; Benzene; Catalysis; Dimers; Hydrogen; Nucleophiles; Reaction intermediates; Solvents; Toluene; Hydrogen bonds
Año:2011
Volumen:24
Número:2
Página de inicio:101
Página de fin:109
DOI: http://dx.doi.org/10.1002/poc.1712
Título revista:Journal of Physical Organic Chemistry
Título revista abreviado:J Phys Org Chem
ISSN:08943230
CODEN:JPOCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08943230_v24_n2_p101_Alvaro

Referencias:

  • Nudelman, N.S., (1996) The Chemistry of Amino, Nitroso, Nitro and Related Groups, pp. 1215-1300. , Ch. 29 (Ed: S. Patai), Wiley J & Sons Ltd, London
  • Nudelman, N.S., (1989) J. Phys. Org. Chem., 2, pp. 1-14
  • Buncel, E., Dust, J.M., Terrier, F., (1995) Chem. Rev., 95, p. 2261. , references therein
  • Terrier, F., Nucleophilic aromatic displacement: The influence of the nitro group (1991) Organic Nitro Chemistry Series, , in (Ed.: H. Ferrer) VCH Publishers, New York
  • Harris, J.M., McManus, S.P., (1987) Nucleophilicity, Advances in Chemistry, p. 215. , A.C.S., Washington
  • Crampton, M.R., Emokpae, T.A., Isanbor, C., (2007) Eur. J. Org. Chem., 8, pp. 1378-1383
  • Crampton, M.R., Emokpae, T.A., Isanbor, C., (2006) J. Phys. Org. Chem., 19, pp. 75L-80L
  • Crampton, M.R., Emokpae, T.A., Isanbor, C., Batsanov, A.S., Howard, J.A.K., Mondal, R., (2006) Eur. J. Org. Chem., 5, pp. 1222-1230
  • Crampton, M.R., Emokpae, T.A., Howard, J.A.K., Isanbor, C., Mondal, R., (2004) J. Phys. Org. Chem., 17, pp. 65-70
  • Isanbor, C., Emokpae, T.A., Crampton, M.R., (2002) J. Chem. Soc. Perkin Trans. 2, pp. 2019-2024
  • Bakavoli, M., Pordel, M., Rahimizadeh, M., Jahandari, P., (2008) J. Chem. Res., 8, pp. 432-433
  • Reichardt, C., (2003) Solvent and Solvents Effects in Organic Chemistry, , 3rd Edn, Wiley-VCH: Verlag GmcH & Co. KgaA, Weinheim
  • Alvaro, C.E.S., Nudelman, N.S., (2003), ARKIVOC.; Part. X: 95-106 SIN: 1424-6369; Nudelman, N.S., Alvaro, C.E.S., Savini, M., Nicotra, V., Yankelevich, J.S., (1999) Collect. Czech. Chem. Commun., 64, pp. 1583-1593
  • Nudelman, N.S., Savini, M., Alvaro, C.E.S., Nicotra, V., Yankelevich, J.S., (1999) J. Chem. Soc. Perkin Trans. 2, pp. 1627-1630
  • Mancini, P.M., Fortunato, G.G., Vottero, L.R., (2005) J. Phys. Org. Chem., 18, pp. 336-346
  • Mancini, P.M.E., Fortunato, G., Adam, C., Vottero, L.R., Terenzani, A.J., (2002) J. Phys. Org. Chem., 15, pp. 258-269
  • Mancini, P.M.E., Adam, C., Perez Del, A.C., Vottero, L.R., (2000) J. Phys. Org. Chem., 13, pp. 221-231
  • Boga, C., Forlani, L., (2001) J. Chem. Soc. Perkin Trans. 2, pp. 1408-1413. , references cited therein
  • Forlani, L., Boga, C., Forconi, M., (1999) J. Chem. Soc. Perkin 2, pp. 1455-1458
  • Hintermann, L., Masuo, R., Suzuki, K., (2008) Org. Lett., 10 (21), pp. 4859-4862
  • Jacobsson, M., Oxgaard, J., Abrahamsson, C., Norrby, P.-O., Goddard, W.A., Ellervik, U., (2008) Chemistry, 14 (13), pp. 3954-3960
  • Desiraju, G.R., Steiner, T., (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology, , Oxford University Press, New York
  • Scheiner, S., (1997) Hydrogen Bonding: A Theorical Perspective, , Oxford University Press, New York
  • Raczynska, E.D., Maria, P.-C., Gal, J.-F., Decouzon, M., (1994) J. Phys. Org. Chem., 7, pp. 725-733
  • Raczynska, E.D., Decouzon, M., Gal, J.-F., Maria, P.-C., Taft, R.W., Anvia, F., (2000) J. Org. Chem., 65, pp. 4635-4640
  • Hernández-Laguna, A., Abboud, J.L.M., Notario, R., Homan, H., Smeyers, Y.G., (1993) J. Am. Chem. Soc., 115, pp. 1450-1454
  • Hernández-Laguna, A., Abboud, J.L.M., Homan, H., López-Mardomingo, C., Notario, R., Cruz-Rodriguez, Z., Haro-Ruiz, M.D., Botella, V., (1995) Phys. Chem., 99, pp. 9087-9094
  • Maksić, Z.B., Kovačević, B., (1999) J. Chem. Soc. Perkin Trans. 2, pp. 1623-1629
  • Alvaro, C.E.S., Nudelman, N.S., (2005) J. Phys. Org. Chem., 18, pp. 880-885
  • Grabowski, S.J., Robinson, T.L., Leszczynski, J., (2004) Chem. Phys. Lett., 386, pp. 44-L. , 48
  • Grabowski, S.J., Pfitzner, A., Zabel, M., Dubis, A.T., Palusiak, M., (2004) J. Phys. Chem. B., 108, pp. 1831-1837
  • Rhee, S.K., Kim, S.H., Lee, S., Lee, J.Y., (2004) Chem. Phys., 297, pp. 21-29
  • Buemi, G., Zuccarello, F., (2004) Chem. Phys., 306, pp. 115-129
  • Solimannejad, M., Scheiner, S., (2006) Chem. Phys. Lett., 424, pp. 1-6
  • Pejov, L., Solimannejad, M., Stefov, V., (2006) Chem. Phys., 323, pp. 259-270
  • Gu, Y., Kar, S., Scheiner, S., (2000) J. Mol. Struct., 552, pp. 17-23
  • Folmer, B.J.B., Sijbesma, R.P., Kooijman, H., Spek, A.L., Meijer, E.W., (1999) J. Am. Chem. Soc., 121, pp. 9001-9007
  • Forés, M., Duran, M., Solá, M., (1999) J. Phys. Chem. A., 103, pp. 4525-4532
  • Ramondo, F., Bencivenni, L., Portalone, G., Domenicano, A., (1994) Struct. Chem., 5, p. 1
  • Llamas-Saiz, A.L., Foces-Foces, C., Elguero, J., (1994) J. Mol. Struct., 328, p. 297
  • Eskesen, K., Ussing, H.H., (1989) Acta Physiol. Scand., 136, pp. 547-552
  • Pinelli, A., Trivulzo, S., Malvezzi, L., Rossoni, G., Beretta, L., (1989) Arzneim-Forsh., 39, pp. 467-471
  • Murthy, G.R., Reddy, V.M., (1987) Ind. J. Pharm. Sci., 49, pp. 175-178
  • Serafin, B., Borlowska, G., Glowczyk, J., Kowalska, S., Rump, S., (1989) Pol J. Pharmacol. Pharm., 41, pp. 89-93
  • Steel, P.J., (1991) J. Heterocyclic Chem., 28, pp. 1817-1821
  • Caira, R.M., Watson, W.H., Vogtle, F., Muller, W., (1984) Acta Cryst., 40 C, pp. 1047-1050
  • Raab, V., Kipke, J., Gschwind, R., Sundermeyer, J., (2002) Chem. Eur. J., 8, pp. 1682-1693
  • Kovačević, B., Maksić, Z.B., (2002) Chem. Eur. J., 8, pp. 1694-1702
  • Andrade-López, N., Ariza-Castolo, A., Contreras, R., Vásquez-Olmos, A., Barba Behrens, N., Tlahuext, H., (1997) Heteroatom Chem., 8, pp. 397-410. , references therein
  • Willis, P.G., (2001), Doctoral Thesis, University of Kentucky; Hernández-García, R.M., Barba-Behrens, N., Salcedo, R., Hojer, G., (2003) J. Mol. Structure (Theochem)., 637, pp. 55-72. , references therein
  • Gilli, G., Gilli, P., Bertolassi, V., Ferretti, V., (1994) J.Am. Chem. Soc., 116, pp. 909-915
  • Alkorta, I., Elguero, J., Mó, O., Yánez, M., Del Bene, J.E., (2005) Chem. Phys. Lett., 411, pp. 411-415
  • Suhr, H., (1963) Ber. Bunsenges. Phys. Chem., 67, p. 893
  • Chiacchiera, S.M., Singh, J.O., Anunziata, J.D., Silver, J.J., (1988) J. Chem. Soc., Perkin Trans 2, pp. 1585-1589
  • Bergero, F., Alvaro, C.E.S., Nudelman, N.S., Ramos De Debiaggi, S., (2009) J. Mol. Struct. (Theochem), 896, pp. 18-24
  • Nudelman, N.S., Palleros, D., (1981) Acta Sud. Am. Quim., 1, p. 125. , For the first reports of the "dimer nucleophile" mechanism see
  • Nudelman, N.S., Palleros, D., (1983) J. Org. Chem., 48, pp. 1607-1612
  • Raczynska, E.D., Wozniak, K., (1998) Trends in Organic Chemistry, 7, p. 160. , references therein
  • Meot-Ner, M., Hamlet, P., Hunter, E.P.L., Field, F.H., J. Am. Chem. Soc., 1980 (102), p. 6393
  • Nudelman, N.S., Montserrat, J.M., (1990) J.Chem. Soc., Perkin Trans. 2, pp. 1073-1076
  • Nudelman, N.S., Marder, M., Gurevich, A., (1993) J. Chem. Soc., Perkin Trans 2, pp. 229-233
  • Bunnet, J.F., Kato, T., Nudelman, N.S., (1974) Fundamental Organic Chemistry Laboratory Manual, p. 112. , (Eds: K. T. Finley, J. Wilson), Prentice-Hall, New Jersey,

Citas:

---------- APA ----------
Alvaro, C.E.S., Ayala, A.D. & Nudelman, N.S. (2011) . Hydrogen-bonded nucleophile effects in ANS: The reactions of 1-chloro and 1-fluoro-2,4-dinitrobenzene with 2-guanidinobenzimidazole, 1-(2-aminoethyl) piperidine and N-(3-aminopropyl)morpholine in aprotic solvents. Journal of Physical Organic Chemistry, 24(2), 101-109.
http://dx.doi.org/10.1002/poc.1712
---------- CHICAGO ----------
Alvaro, C.E.S., Ayala, A.D., Nudelman, N.S. "Hydrogen-bonded nucleophile effects in ANS: The reactions of 1-chloro and 1-fluoro-2,4-dinitrobenzene with 2-guanidinobenzimidazole, 1-(2-aminoethyl) piperidine and N-(3-aminopropyl)morpholine in aprotic solvents" . Journal of Physical Organic Chemistry 24, no. 2 (2011) : 101-109.
http://dx.doi.org/10.1002/poc.1712
---------- MLA ----------
Alvaro, C.E.S., Ayala, A.D., Nudelman, N.S. "Hydrogen-bonded nucleophile effects in ANS: The reactions of 1-chloro and 1-fluoro-2,4-dinitrobenzene with 2-guanidinobenzimidazole, 1-(2-aminoethyl) piperidine and N-(3-aminopropyl)morpholine in aprotic solvents" . Journal of Physical Organic Chemistry, vol. 24, no. 2, 2011, pp. 101-109.
http://dx.doi.org/10.1002/poc.1712
---------- VANCOUVER ----------
Alvaro, C.E.S., Ayala, A.D., Nudelman, N.S. Hydrogen-bonded nucleophile effects in ANS: The reactions of 1-chloro and 1-fluoro-2,4-dinitrobenzene with 2-guanidinobenzimidazole, 1-(2-aminoethyl) piperidine and N-(3-aminopropyl)morpholine in aprotic solvents. J Phys Org Chem. 2011;24(2):101-109.
http://dx.doi.org/10.1002/poc.1712