Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The present study focuses on the application of some physical organic chemistry (POC) models for a better understanding of the interactions between oil spills and soil. By studying the sorption behavior of pure compounds, it was possible to examine the application of the multilayer model to the prediction of crude oil isotherms. The difference between the predicted and experimental oil isotherms was only 13%, which indicates the reliability of the model. The distribution coefficients, Kd of soil samples containing oil residuals of different ages, were also determined using methanol as a co-solvent. Desorption experiments showed that they are a function of the polarity of the liquid phases; the Kds, calculated by applying a model derived from the solvophobic theory, increase with increasing age. On the other hand, the natural attenuation of oil spills was studied by using GC and 1H NMR techniques. Signals for four types of aliphatic and for the aromatic protons were clearly assigned; signals for alcohol (OH) and carboxylic (COOH) protons were also observed; compounds exhibiting these polar groups are usually not detected in the GC-FID conventional analysis. The principal component analysis (PCA) of Kd and the parameters determined by GC and NMR, showed that the first and second PC, accounted for more than 95 and 81% of variance, for NMR and GC parameters, respectively. The detailed results suggest that the 1H NMR data would be more useful than GCs to evaluate the environmental transformations that oil spills undergo in Patagonian soils. Nevertheless, direct extrapolation of the present results to other environments is not possible because the changes depend strongly on the original chemical composition of the crude oil and the variable exposure conditions along the time. Copyright © 2008 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils
Autor:Nudelman, N.S.; Ríos, S.M.; Katusich, O.
Filiación:Department of Organic Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, P. 3, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Department of Chemistry, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Km 4, 9000 Comodoro Rivadavia, Chubut, Argentina
Palabras clave:BET model; Crude oil sorption; Distribution coefficients; Oil NMR parameters; Oil residues; Oil spill; PCA; Crude petroleum; Isotherms; Methanol; Nuclear magnetic resonance spectroscopy; Principal component analysis; Soils; Sorption; BET model; Distribution coefficients; Oil residues; Physical organic chemistry (POC) models; Oil spills
Año:2008
Volumen:21
Número:4
Página de inicio:329
Página de fin:337
DOI: http://dx.doi.org/10.1002/poc.1335
Título revista:Journal of Physical Organic Chemistry
Título revista abreviado:J Phys Org Chem
ISSN:08943230
CODEN:JPOCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08943230_v21_n4_p329_Nudelman

Referencias:

  • Dragun, J., (1998) The Soil Chemistry of the Hazardous Materials, , Amherst Scientific Publishers, Massachusetts
  • Cornelissen, G., Van Noort, P.C.M., Parsons, J.R., Govers, H.A.J., (1997) Environ. Sci. Technol, 31, pp. 454-460
  • Nudelman, N.S., Ríos, S.M., Katusich 0, (2003) Interfacial Applications in Environmental Engineering, , Ed, M. A. Keane, Marcel Dekker Inc, New York
  • Huang, W., Weber, W.A., (1997) Environ. Sci. Technol, 31, pp. 2562-2569
  • Nudelman, N., Ríos, S.M., Katusich 0, (2002) Environ. Technol, 23, pp. 961-970
  • Nudelman, N., Ríos, S.M., Katusich, O., (2000) Environ. Technol, 21, pp. 437-447
  • Marczewski, A.W., Szymula, M., (2002) Coll. Surf. A, 208, pp. 259-266
  • Lee, S.Y., Kim, S.J., (2002) Appl. Clay Sci, 22, pp. 55-63
  • Jain, A.K., Gupta, V.K., Bhatnagar, A., Suhas, J., (2003) J. Hazard. Mater, B101, pp. 31-42
  • Chern, J.M., Chien, Y.W., (2003) Water Res, 37, pp. 2347-2356
  • Parker, A., Rae, J.E., (1998) Environmental Interactions of Clays, , Springer-Verlag Berlin, Heidelberg, New York
  • White, J.C., Pignatello, J.J., (1999) Environ. Sci. Technol, 33, pp. 4292-4298
  • Chung, N., Martin, A., (1998) Environ. Sci. Technol, 32, pp. 855-860
  • Dwarakanath, V., Pope, G., (1998) Environ. Sci. Technol, 32, pp. 1662-1666
  • Ríos, S.M., Nudelman, N.S., Katusich, O., (2004) Latin Am. Appl. Res. J, 34, pp. 149-153
  • Sugiura, K., Ishihara, M., Shimauchi, T., Harayama, S., (1997) Environ. Sci. Technol, 31, pp. 45-51
  • Dutta, T.K., Harayama, S., (2000) Environ. Sci. Technol, 34, pp. 1500-1505
  • Prince, R.C., Garrett, R.M., Bare, R.E., Grossman, M.J., Townsend, T., Suflita, J.M., Lee, K., Lessard, R.R., (2003) Spill Sci. Tech. Bull, 8 (2), pp. 145-156
  • Blomberg, J., Schoenmakers, U.A., Brinkman, U.A.T., (2002) J. Chromatogr. A, 972, pp. 137-173
  • Barron, M.G., Ka'Aihue, L., (2001) Mar. Pollut. Bull, 43 (1-2), pp. 86-92
  • Barakat, A.O., Qian, Y., Kim, M., Kennicutt, M.C., (2001) Environ. Int, 27, pp. 291-310
  • Barakat, A.O., Mostafa, A.R., Qian, Y., Kennicut, M.C., (2002) Spill Sci. Tech. Bull, 7, pp. 229-239
  • Snape, I., Ferguson, S.H., Harvey, P.M.A., Riddle, M.J., (2006) Chemosphere, 63, pp. 89-98
  • Hairber, S., Buddrus, J., (2002) Fuel, 81, pp. 981-987
  • Speight, J.G., (1991) The Chemistry and Technology of Petroleum, , Marcel Dekker, New York
  • Kapur, G.S., Singh, A.P., Sarpal, A.S., (2000) Fuel, 79, pp. 1023-1029
  • Yang, Y., Liu, B., Xi, H., Sun, X., Zhang, T., (2003) Fuel, 82, pp. 721-727
  • Harrison, A., (1995) Fractals in Chemistry, pp. 69-72. , Oxford Science Publications, Oxford
  • Rios, S.M., Nudelman, N.S., (2005) J. Disp. Sci. Technol, 26, pp. 1-8
  • Hundal, L.S., Thompson, M.L., Laird, D.A., Carmo, A.M., (2001) Environ. Sci. Technol, 35, pp. 3456-3461
  • Szymula, M., Marczewski, A.W., (2002) Appl. Surf. Sci, 196, pp. 301-311
  • Katritzky, A.R., Tamm, T., Wang, Y., Karelson, M., (1999) J. Chem. Inf. Comput. Sci, 39, pp. 692-699
  • Macleod, C.J.A., Semple, K.T., (2000) Environ. Sci. Technol, 34, pp. 4952-4957
  • Dutta, T.K., Harayama, S., (2001) Environ. Sri. Technol, 35, pp. 102-107
  • Galimberti, R., Ghiselli, C., Chiaramonte, M.A., (2000) Org. Geochem, 31, pp. 1375-1386
  • Tomczyk, N.A., Winans, R.E., (2001) Energy Fuels, 15, pp. 1498-1504
  • Maki, H., Sasaki, T., Harayama, S., (2001) Chemosphere, 44, pp. 1145-1151
  • Yong, T.M., Mohamed, A., Warkentin, B., (1992) The Principles of Contaminant Transport in Soils, , Elsevier, NY
  • Ríos, S.M., Nudelman, N.S., The complete set of data of the GC analyses for all the samples and full details on the procedures will be submitted elsewhere
  • Brandyik, J., Daling, S., (1998) Chemom. Intell. Lab. Syst, 42, pp. 73-91
  • Kapur, G.S., Berger, S., (2002) Fuel, 81, pp. 883-892
  • C. A. Sylwan, J. Iberian Geol. 2001, 27, 123-157; Nakamatsu, V., Luque, J., Ciano, N., Amari, M., Utrilla, V., Lisoni, C., 3era Jornadas de Preservatión de Agua, Aire y Suelo en la Industria del Petroleo y del Gas; IAPG II, pp. 213-222
  • Commendatore, M.G., Esteves, J.L., Colombo, J.C., (2000) Mar. Pollut. Bull, 40, pp. 989-998
  • Mu, L., Drago, R.S., Richarson, D.E., (1998) J. Chem. Soc. Perkin. Trans, 2, pp. 159-164
  • Fowler, F.W., Katritzky, A.R., Rutherford, R.J.D., (1971) J. Chem. Soc. B, p. 460
  • Davis, K.M.C., (1967) J. Chem. Soc. B, pp. 1128-1130
  • Walter, W., Bauer, 0.H., (1977) Liebigs Ann. Chem, pp. 421-429
  • Swain, C.G., Swain, M.S., Powell, A.L., Alunni, S., (1983) J. Am. Chem. Soc, 105, pp. 502-513
  • Oshima, T., Arikata, S., Nagai, T., (1981) J. Chem. Res, pp. 204-205. , S
  • Buncel, E., Rajagopal, S., (1989) J. Org. Chem, 54, pp. 798-809
  • Catalán, J., Díaz, C., López, V., Pérez, P., de Paz, J.L.G., Rodríguez, J.G., (1996) Liebigs Ann, pp. 1785-1794
  • Sergent, M., Luu, R.P.T., Elguero, J., (1997) Anales de Quím, 93, pp. 71-76. , Int. Ed
  • Laurence, C., Queignee-Cabanetos, M., Dziembowska, T., Queignee, R., Wojtkowiak, B., (1981) J. Am. Chem. Soc, 103, pp. 2567-2573

Citas:

---------- APA ----------
Nudelman, N.S., Ríos, S.M. & Katusich, O. (2008) . Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils. Journal of Physical Organic Chemistry, 21(4), 329-337.
http://dx.doi.org/10.1002/poc.1335
---------- CHICAGO ----------
Nudelman, N.S., Ríos, S.M., Katusich, O. "Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils" . Journal of Physical Organic Chemistry 21, no. 4 (2008) : 329-337.
http://dx.doi.org/10.1002/poc.1335
---------- MLA ----------
Nudelman, N.S., Ríos, S.M., Katusich, O. "Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils" . Journal of Physical Organic Chemistry, vol. 21, no. 4, 2008, pp. 329-337.
http://dx.doi.org/10.1002/poc.1335
---------- VANCOUVER ----------
Nudelman, N.S., Ríos, S.M., Katusich, O. Application of some physical organic chemistry models to the study of oil spills residues in Patagonian soils. J Phys Org Chem. 2008;21(4):329-337.
http://dx.doi.org/10.1002/poc.1335