Registro:
Documento: |
Artículo
|
Título: | K-regularity, cdh-fibrant hochschild homology, and a conjecture of vorst |
Autor: | Cortiñas, G.; Haesemeyer, C.; Weibel, C. |
Filiación: | Departamento Matemática, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina Departamento Álgebra, Faculdad de Ciencias, Prado de la Magdalena s/n, 47005 Valladolid, Spain Department of Mathematics, University of Illinois, Urbana, IL 61801, United States Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 SEO, 851 South Morgan Street, Chicago, IL 60607-7045, United States Department of Mathematics, Rutgers University, New Brunswick, NJ 08901, United States
|
Año: | 2008
|
Volumen: | 21
|
Número: | 2
|
Página de inicio: | 547
|
Página de fin: | 561
|
DOI: |
http://dx.doi.org/10.1090/S0894-0347-07-00571-1 |
Título revista: | Journal of the American Mathematical Society
|
Título revista abreviado: | J. Am. Math. Soc.
|
ISSN: | 08940347
|
PDF: | https://bibliotecadigital.exactas.uba.ar/download/paper/paper_08940347_v21_n2_p547_Cortinas.pdf |
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08940347_v21_n2_p547_Cortinas |
Referencias:
- Artin, M., Grothendieck, A., Verdier, J.L., Théorie des topos et cohomologie étale des schémas. Tome 2 Lecture Notes in Mathematics, 270. , Springer-Verlag, Berlin, 1972. Séminaire de Géomé trie Algébrique du Bois- Marie 1963-1964 SGA 4, Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat
- Bass, H., Murthy, M.P., Grothendieck groups and picard groups of abelian group rings (1967) Annals of Math., 86, pp. 16-73. , MR0219592 36:2671
- Bousfield, A.K., Friedlander, E.M., Homotopy theory of γ-spaces, spectra, and bisimplicial sets (1978) Geometric Applications of Homotopy Theory (Proc. Conf., Evanston, Ill., 1977), II, 658, pp. 80-130. , In, of Lecture Notes in Math., Springer, Berlin, MR513569 80e:55021
- Cortiñas, G., Haesemeyer, C., Schlichting, M., Weibel, C.A., Cyclic homology (2005) To Appear in Annals of Math., , http://www.math.uiuc.edu/K-theory/0722, cdhcohomology and negative K-theory, Preprint. Available at
- Cuntz, J., Quillen, D., Excision in bivariant periodic cyclic homology (1997) Invent. Math., 127, pp. 67-98. , MR1423026 98g:19003
- Dayton, B., Weibel, C., K-theory of hyperplanes (1980) Trans. AMS, 257, pp. 119-141. , MR549158 81e:18015
- Goodwillie, T.G., Cyclic homology, derivations, and the free loop space (1985) Topology, 24 (2), pp. 187-215. , MR793184 87c:18009
- Goodwillie, T.G., Relative algebraic k-theory and cyclic homology (1986) Ann. of Math. (2), 124 (2), pp. 347-402. , MR855300 88b:18008
- Haesemeyer, C., Descent properties of homotopy (2004) K-theory. Duke Math. J., 125, pp. 589-620. , MR2166754 2006g:19002
- Kassel, C., Cyclic homology, comodules and mixed complexes (1987) J. of Algebra, 107, pp. 195-216. , MR883882 88k:18019
- Kassel, C., Sletsjœ, A.B., Base change, transitivity and künneth formulas for the quillen decomposition of hochschild homology (1992) Math. Scand., 70, pp. 186-192. , MR1189973 93i:16017
- Loday, J., Cyclic homology, volume 301 of grundlehren der mathematischen wissenschaften [fundamental principles of mathematical sciences] (1992) Appendix E by María O. Ronco, , Springer-Verlag, Berlin, MR1217970 94a:19004
- Mazza, C., Voevodsky, V., Weibel, C., Lecture notes on motivic cohomology (2006) Clay Mathematics Monographs, 2, , American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, MR2242284 2007e:14035
- Nisnevich, Y., (1989) The Completely Decomposed Topology, pp. 241-341. , NATO ASI 279, Kluwer, MR1045853 91c:19004
- Suslin, A., Voevodsky, V., Bloch-kato conjecture and motivic cohomology with finite coefficients (2000) The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), 548, pp. 117-189. , In, of NATO Sci. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, MR1744945 2001g:14031
- Thomason, R.W., Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories (1990) The Grothendieck Festschrift, 3, pp. 247-436. , In, volume 88 of Progress in Math., Birkhäuser, Boston, Basél, Berlin, MR1106918 92f:19001
- Vorst, T., Localization of the K-theory of polynomial extensions (1979) Math. Ann., 244, pp. 33-54. , MR550060 80k:18016
- Vorst, T., (1979) Polynomial Extensions and Excision for K 1 Math. Ann., 244, pp. 193-204. , MR553251 82a:13002
- Weibel, C., (1989) Homotopy Algebraic K-theory AMS Contemp Math., 83, pp. 461-488. , MR991991 90d:18006
- Weibel, C., (1994) An Introduction to Homological Algebra, , Cambridge Univ. Press, MR1269324 95f:18001
- Weibel, C., Cyclic homology for schemes (1996) Proc. AMS, 124, pp. 1655-1662. , MR1277141 96h:19003
- Weibel, C., The hodge filtration and cyclic homology (1997) K-theory, 12, pp. 145-164. , MR1469140 98h:19004
- Weibel, C., The negative k-theory of normal surfaces (2001) Duke Math. J., 108, pp. 1-35. , MR1831819 2002b:14012
Citas:
---------- APA ----------
Cortiñas, G., Haesemeyer, C. & Weibel, C.
(2008)
. K-regularity, cdh-fibrant hochschild homology, and a conjecture of vorst. Journal of the American Mathematical Society, 21(2), 547-561.
http://dx.doi.org/10.1090/S0894-0347-07-00571-1---------- CHICAGO ----------
Cortiñas, G., Haesemeyer, C., Weibel, C.
"K-regularity, cdh-fibrant hochschild homology, and a conjecture of vorst"
. Journal of the American Mathematical Society 21, no. 2
(2008) : 547-561.
http://dx.doi.org/10.1090/S0894-0347-07-00571-1---------- MLA ----------
Cortiñas, G., Haesemeyer, C., Weibel, C.
"K-regularity, cdh-fibrant hochschild homology, and a conjecture of vorst"
. Journal of the American Mathematical Society, vol. 21, no. 2, 2008, pp. 547-561.
http://dx.doi.org/10.1090/S0894-0347-07-00571-1---------- VANCOUVER ----------
Cortiñas, G., Haesemeyer, C., Weibel, C. K-regularity, cdh-fibrant hochschild homology, and a conjecture of vorst. J. Am. Math. Soc. 2008;21(2):547-561.
http://dx.doi.org/10.1090/S0894-0347-07-00571-1