Artículo

Bianco, M.I.; Toum, L.; Yaryura, P.M.; Mielnichuk, N.; Gudesblat, G.E.; Roeschlin, R.; Marano, M.R.; Ielpi, L.; Vojnov, A.A. "Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris" (2016) Molecular Plant-Microbe Interactions. 29(9):688-699
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Xanthan, the main exopolysaccharide (EPS) synthesized by Xanthomonas spp., contributes to bacterial stress tolerance and enhances attachment to plant surfaces by helping in biofilm formation. Therefore, xanthan is essential for successful colonization and growth in planta and has also been proposed to be involved in the promotion of pathogenesis by calcium ion chelation and, hence, in the suppression of the plant defense responses in which this cation acts as a signal. The aim of this work was to study the relationship between xanthan structure and its role as a virulence factor. We analyzed four Xanthomonas campestris pv. campestris mutants that synthesize structural variants of xanthan. We found that the lack of acetyl groups that decorate the internal mannose residues, ketal-pyruvate groups, and external mannose residues affects bacterial adhesion and biofilm architecture. In addition, the mutants that synthesized EPS without pyruvilation or without the external mannose residues did not develop disease symptoms in Arabidopsis thaliana. We also observed that the presence of the external mannose residues and, hence, pyruvilation is required for xanthan to suppress callose deposition as well as to interfere with stomatal defense. In conclusion, pyruvilation of xanthan seems to be essential for Xanthomonas campestris pv. campestris virulence. © 2016 The American Phytopathological Society.

Registro:

Documento: Artículo
Título:Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris
Autor:Bianco, M.I.; Toum, L.; Yaryura, P.M.; Mielnichuk, N.; Gudesblat, G.E.; Roeschlin, R.; Marano, M.R.; Ielpi, L.; Vojnov, A.A.
Filiación:Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundacion Pablo Cassara, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Saladillo 2468, Ciudad de Buenos Aires, C1440FFX, Argentina
Centro de Investigaciones y Transferencia (CIT Villa María), CONICET-Instituto de Ciencias Basicas y Aplicadas, Universidad Nacional de Villa María, Av. Arturo Jauretche 1555, Villa-María, Cordoba, 5900, Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Departamento de Biodiversidad y Biología Experimental (DBBE), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, C1428EGA, Argentina
Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Area Virología, Facultad de Ciencias Bioquímicas y Farmaceuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/n, Rosario, S2000FHN, Argentina
Laboratorio de Genetica Bacteriana, Fundacion Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Patricias Argentinas 435, Ciudad de Buenos Aires, C1405BWE, Argentina
Palabras clave:bacterial polysaccharide; callose; glucan; pyruvic acid; virulence factor; xanthan; Arabidopsis; biofilm; chemistry; genetics; growth, development and aging; host pathogen interaction; metabolism; microbiology; mutation; pathogenicity; physiology; plant disease; plant leaf; plant stoma; virulence; Xanthomonas campestris; Arabidopsis; Biofilms; Glucans; Host-Pathogen Interactions; Mutation; Plant Diseases; Plant Leaves; Plant Stomata; Polysaccharides, Bacterial; Pyruvic Acid; Virulence; Virulence Factors; Xanthomonas campestris
Año:2016
Volumen:29
Número:9
Página de inicio:688
Página de fin:699
DOI: http://dx.doi.org/10.1094/MPMI-06-16-0106-R
Título revista:Molecular Plant-Microbe Interactions
Título revista abreviado:Mol. Plant-Microbe Interact.
ISSN:08940282
CODEN:MPMIE
CAS:glucan, 9012-72-0, 9037-91-6; pyruvic acid, 127-17-3, 19071-34-2, 57-60-3; xanthan, 11138-66-2; callose; Glucans; Polysaccharides, Bacterial; Pyruvic Acid; Virulence Factors; xanthan gum
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08940282_v29_n9_p688_Bianco

Referencias:

  • Adam, L., Somerville, S.C., Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana (1996) Plant J., 9, pp. 341-356
  • Aslam, S.N., Newman, M.A., Erbs, G., Morrissey, K.L., Chinchilla, D., Boller, T., Jensen, T.T., Cooper, R.M., Bacterial polysaccharides suppress induced innate immunity by calcium chelation (2008) Current Biol., 18, pp. 1078-1083
  • Bergmann, D., Furth, G., Mayer, C., Binding of bivalent cations by xanthan in aqueous solution (2008) Int. J. Biol. Macromol., 43, pp. 245-251
  • Bestwick, C.S., Bennett, M.H., Mansfield, J.W., Hrp mutant of Pseudomonas syringae pv phaseolicola induces cell wall alterations but not membrane damage leading to the hypersensitive reaction in lettuce (1995) Plant Physiol., 108, pp. 503-516
  • Betlach, M.R., Capage, M.A., Doherty, D.H., Hassler, R.A., Henderson, N.M., Vanderslice, R.W., Ward, M.B., Genetically engineered polymers: Manipulation of xanthan biosynthesis (1987) Progr. Biotechnol., 3, pp. 35-50
  • Büttner, D., Bonas, U., Regulation and secretion of Xanthomonas virulence factors (2010) FEMS Microbiol. Rev., 34, pp. 107-133
  • Cadmus, M.C., Rogovin, S.P., Burton, K.A., Pittsley, J.E., Knutson, C.A., Jeanes, A., Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain (1976) Can. J. Microbiol., 22, pp. 942-948
  • Capage, M.R., Doherty, D.H., Betlach, M.R., Vanderslice, R.W., (1987) Recombinant-DNA Mediated Production of Xanthan Gum, , October, International patent
  • Chan, J.W., Goodwin, P.H., The molecular genetics of virulence of Xanthomonas campestris (1999) Biotechnol. Adv., 17, pp. 489-508
  • Denny, T.P., Involvement of bacterial polysaccharides in plant pathogenesis (1995) Annu. Rev. Phytopathol., 33, pp. 173-197
  • Dentini, M., Crescenzi, V., Blasi, D., Conformational properties of xanthan derivatives in dilute aqueous solution (1984) Int. J. Biol. Macromol., 6, pp. 93-98
  • Donlan, R.M., Biofilms: Microbial life on surfaces (2002) Emerg. Infect. Dis., 8, pp. 881-890
  • Dow, J.M., Daniels, M.J., Pathogenicity determinants and global regulation of pathogenicity of Xanthomonas campestris pv campestris (1994) Curr. Top. Microbiol. Immunol., 192, pp. 29-41
  • Dow, J.M., Crossman, L., Findlay, K., He, Y.Q., Feng, J.X., Tang, J.L., Biofilm dispersal in Xanthomonas campestris is controlled by cellcell signaling and is required for full virulence to plants (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 10995-11000
  • Enrique, R., Siciliano, F., Favaro, M.A., Gerhardt, N., Roeschlin, R., Rigano, L., Sendin, L., Marano, M.R., Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp citri (2011) Plant Biotechnol. J., 9, pp. 394-407
  • Flemming, H.C., Wingender, J., The biofilm matrix (2010) Nat. Rev. Microbiol., 8, pp. 623-633
  • Franklin, M.J., Ohman, D.E., Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation (1993) J. Bacteriol., 175, pp. 5057-5065
  • Galvan, E.M., Ielmini, M.V., Patel, Y.N., Bianco, M.I., Franceschini, E.A., Schneider, J.C., Ielpi, L., Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB (2013) Glycobiology, 23, pp. 259-272
  • Gudesblat, G.E., Torres, P.S., Vojnov, A.A., Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor (2009) Plant Physiol., 149, pp. 1017-1027
  • Hann, D.R., Rathjen, J.P., Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana (2007) Plant J., 49, pp. 607-618
  • Heydorn, A., Nielsen, A.T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B.K., Molin, S., Quantification of biofilm structures by the novel computer program COMSTAT (2000) Microbiology, 146, pp. 2395-2407
  • Ielpi, L., Couso, R.O., Dankert, M.A., Pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid (1981) Biochem. Biophys. Res. Commun., 102, pp. 1400-1408
  • Ielpi, L., Couso, R.O., Dankert, M.A., Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris (1993) J. Bacteriol., 175, pp. 2490-2500
  • Jansson, P.E., Kenne, L., Lindberg, B., Structure of extracellular polysaccharide from Xanthomonas campestris (1975) Carbohydr. Res., 45, pp. 275-282
  • Joshi-Saha, A., Valon, C., Leung, J., A brand new START: Abscisic acid perception and transduction in the guard cell (2011) Sci. Signal., 4, p. re4
  • Katzen, F., Becker, A., Zorreguieta, A., Pühler, A., Ielpi, L., Promoter analysis of the Xanthomonas campestris pv campestris gum operon directing biosynthesis of the xanthan polysaccharide (1996) J. Bacteriol., 178, pp. 4313-4318
  • Katzen, F., Ferreiro, D.U., Oddo, C.G., Ielmini, M.V., Becker, A., Puhler, A., Ielpi, L., Xanthomonas campestris pv campestris gum mutants: Effects on xanthan biosynthesis and plant virulence (1998) J. Bacteriol., 180, pp. 1607-1617
  • Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., Schroeder, J.I., Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling (2010) Annu. Rev. Plant Biol., 61, pp. 561-591
  • Kollist, H., Nuhkat, M., Roelfsema, M.R., Closing gaps: Linking elements that control stomatal movement (2014) New Phytol., 203, pp. 44-62
  • Koplin, R., Arnold, W., Hotte, B., Simon, R., Wang, G., Puhler, A., Genetics of xanthan production in Xanthomonas campestris: The xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis (1992) J. Bacteriol., 174, pp. 191-199
  • Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M., Peterson, K.M., PBBR1MCS: A broad-host-range cloning vector (1994) Biotechniques, 16, pp. 800-802
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., Peterson, K.M., Four new derivatives of the broadhost-range cloning vector pBBR1MCS, carrying different antibioticresistance cassettes (1995) Gene, 166, pp. 175-176
  • Malamud, F., Torres, P.S., Roeschlin, R., Rigano, L.A., Enrique, R., Bonomi, H.R., Castagnaro, A.P., Vojnov, A.A., The Xanthomonas axonopodis pv citri flagellum is required for mature biofilm and canker development (2011) Microbiology, 157, pp. 819-829
  • Melotto, M., Underwood, W., Koczan, J., Nomura, K., He, S.Y., Plant stomata function in innate immunity against bacterial invasion (2006) Cell, 126, pp. 969-980
  • Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., Ausubel, F.M., Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns (2010) Plant Cell, 22, pp. 973-990
  • Møller, S., Sternberg, C., Andersen, J.B., Christensen, B.B., Ramos, J.L., Givskov, M., Molin, S., In situ gene expression in mixedculture biofilms: Evidence of metabolic interactions between community members (1998) Appl. Environ. Microbiol., 64, pp. 721-732
  • Murashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-497
  • Murga, R., Stewart, P.S., Daly, D., Quantitative analysis of biofilm thickness variability (1995) Biotechnol. Bioeng., 45, pp. 503-510
  • Newman, M.A., Conrads-Strauch, J., Scofield, G., Daniels, M.J., Dow, J.M., Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity (1994) Mol. Plant-microbe Interact., 7, pp. 553-563
  • O'Toole, G.A., Kolter, R., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development (1998) Mol. Microbiol., 30, pp. 295-304
  • Posadas, D.M., Ruiz-Ranwez, V., Bonomi, H.R., Martin, F.A., Zorreguieta, A., BmaC, a novel autotransporter of Brucella suis, is involved in bacterial adhesion to host cells (2012) Cell. Microbiol., 14, pp. 965-982
  • Rigano, L.A., Siciliano, F., Enrique, R., Sendin, L., Filippone, P., Torres, P.S., Questa, J., Marano, M.R., Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv (2007) Citri. Mol. Plant-microbe Interact., 20, pp. 1222-1230
  • Rigano, L.A., Payette, C., Brouillard, G., Marano, M.R., Abramowicz, L., Torres, P.S., Yun, M., Vojnov, A.A., Bacterial cyclic β-(1, 2)-glucan acts in systemic suppression of plant immune responses (2007) Plant Cell, 19, pp. 2077-2089
  • Romaní, A.M., Fund, K., Artigas, J., Schwartz, T., Sabater, S., Obst, U., Relevance of polymeric matrix enzymes during biofilm formation (2008) Microb. Ecol., 56, pp. 427-436
  • Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Laboratory, New York
  • Sawinski, K., Mersmann, S., Robatzek, S., Bohmer, M., Guarding the green: Pathways to stomatal immunity (2013) Mol. Plant-microbe Interact., 26, pp. 626-632
  • Shatwell, K.P., Sutherland, I.W., Ross-Murphy, S.B., Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide (1990) Int. J. Biol. Macromol., 12, pp. 71-78
  • Sherwood, M.T., Improved synthetic medium for the growth of Rhizobium (1970) J. Appl. Bacteriol., 33, pp. 708-713
  • Simon, R., High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon (1984) Mol. Gen. Genet., 196, pp. 413-420
  • Simon, R., Priefer, U., Pühler, A., A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria (1983) Bio-Technol., 1, pp. 784-791
  • Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., Leung, J., The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action (2009) J. Exp. Bot., 60, pp. 1439-1463
  • Stankowski, J.D., Mueller, B.E., Zeller, S.G., Location of a second O-acetyl group in xanthan gum by the reductive-cleavage method (1993) Carbohydr. Res., 241, pp. 321-326
  • Stoodley, P., Cargo, R., Rupp, C.J., Wilson, S., Klapper, I., Biofilm material properties as related to shear-induced deformation and detachment phenomena (2002) J. Ind. Microbiol. Biotechnol., 29, pp. 361-367
  • Tako, M., Nakamura, S., Rheological properties of Ca salt of xanthan in aqueous media (1987) Agric. Biol. Chem., 51, pp. 2919-2923
  • Tielen, P., Strathmann, M., Jaeger, K.E., Flemming, H.C., Wingender, J., Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa (2005) Microbiol. Res., 160, pp. 165-176
  • Torres, P.S., Malamud, F., Rigano, L.A., Russo, D.M., Marano, M.R., Castagnaro, A.P., Zorreguieta, A., Vojnov, A.A., Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris (2007) Environ. Microbiol., 9, pp. 2101-2109
  • Ullrich, M., (2009) Bacterial Polysaccharides: Current Innovations and Future Trends, , Horizon Scientific Press, Poole, U. K
  • Van Hullebusch, E.D., Zandvoort, M.H., Lens, P.N., Metal immobilisation by biofilms: Mechanisms and analytical tools (2003) Environ. Sci. Biotechnol., 2, pp. 9-33
  • Villain-Simonnet, A., Milas, M., Rinaudo, M., A new bacterial polysaccharide (YAS34). I. Characterization of the conformations and conformational transition (2000) Int. J. Biol. Macromol., 27, pp. 65-75
  • Vojnov, A.A., Marano, M.R., Biofilm formation and virulence in bacterial plant pathogens (2015) Virulence Mechanisms of Plant Pathogenic Bacteria, pp. 1-492. , The American Phytopathological Society, St. Paul, MN, U. S. A
  • Vojnov, A.A., Zorreguieta, A., Dow, J.M., Daniels, M.J., Dankert, M.A., Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris (1998) Microbiology, 144, pp. 1487-1493
  • Vojnov, A.A., Slater, H., Daniels, M.J., Dow, J.M., Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta (2001) Mol. Plant-microbe interact., 14, pp. 768-774
  • Vojnov, A.A., Bassi, D.E., Daniels, M.J., Dankert, M.A., Biosynthesis of a substituted cellulose from a mutant strain of Xanthomonas campestris (2002) Carbohydr. Res., 337, pp. 315-326
  • Vu, B., Chen, M., Crawford, R.J., Ivanova, E.P., Bacterial extracellular polysaccharides involved in biofilm formation (2009) Molecules, 14, pp. 2535-2554
  • Webb, A.A., McAinsh, M.R., Mansfield, T.A., Hetherington, A.M., Carbon dioxide induces increases in guard cell cytosolic free calcium (1996) Plant J., 9, pp. 297-304
  • Xiao, J., Klein, M.I., Falsetta, M.L., Lu, B., Delahunty, C.M., Yates, J.R., III, Heydorn, A., Koo, H., The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm (2012) PLoS Pathog., 8, p. e1002623
  • Yun, M.H., Torres, P.S., El Oirdi, M., Rigano, L.A., Gonzalez-Lamothe, R., Marano, M.R., Castagnaro, A.P., Vojnov, A.A., Xanthan induces plant susceptibility by suppressing callose deposition (2006) Plant Physiol., 141, pp. 178-187
  • Zeng, W., He, S.Y., A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis (2010) Plant Physiol., 153, pp. 1188-1198
  • Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., Boller, T., Bacterial disease resistance in Ara bidopsis through flagellin perception (2004) Nature, 428, pp. 764-767

Citas:

---------- APA ----------
Bianco, M.I., Toum, L., Yaryura, P.M., Mielnichuk, N., Gudesblat, G.E., Roeschlin, R., Marano, M.R.,..., Vojnov, A.A. (2016) . Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris. Molecular Plant-Microbe Interactions, 29(9), 688-699.
http://dx.doi.org/10.1094/MPMI-06-16-0106-R
---------- CHICAGO ----------
Bianco, M.I., Toum, L., Yaryura, P.M., Mielnichuk, N., Gudesblat, G.E., Roeschlin, R., et al. "Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris" . Molecular Plant-Microbe Interactions 29, no. 9 (2016) : 688-699.
http://dx.doi.org/10.1094/MPMI-06-16-0106-R
---------- MLA ----------
Bianco, M.I., Toum, L., Yaryura, P.M., Mielnichuk, N., Gudesblat, G.E., Roeschlin, R., et al. "Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris" . Molecular Plant-Microbe Interactions, vol. 29, no. 9, 2016, pp. 688-699.
http://dx.doi.org/10.1094/MPMI-06-16-0106-R
---------- VANCOUVER ----------
Bianco, M.I., Toum, L., Yaryura, P.M., Mielnichuk, N., Gudesblat, G.E., Roeschlin, R., et al. Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris. Mol. Plant-Microbe Interact. 2016;29(9):688-699.
http://dx.doi.org/10.1094/MPMI-06-16-0106-R