Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and β(1,2) cyclic glucan. M. loti lpsβ2 mutant produces LPS with reduced amount of O-antigen, whereas M. loti lpsβ1 mutant produces LPS totally devoid of O-antigen. Both genes are clustered in the chromosome. Based on amino acid sequence homology, LPS sugar composition, and enzymatic activity, we concluded that lpsβ2 codes for an enzyme involved in the transformation of dTDP-glucose into dTDP-rhamnose, the sugar donor of rhamnose for the synthesis of O-antigen. On the other hand, Ipsβ1 codes for a glucosyltransferase involved in the biosynthesis of the O-antigen. Although LPS mutants elicited normal nodules, both show reduced competitiveness compared with the wild type. M. loti β(1-2) cyclic glucan synthase (cgs) mutant induces white, empty, ineffective pseudonodules in Lotus tenuis. Cgs mutant induces normal root hair curling but is unable to induce the formation of infection threads. M. loti cgs mutant was more sensitive to deoxycholate and displayed motility impairment compared with the wild-type strain. This pleiotropic effect depends on calcium concentration and temperature. © 2005 The American Phytopathological Society.

Registro:

Documento: Artículo
Título:Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis
Autor:D'Antuono, A.L.; Casabuono, A.; Couto, A.; Ugalde, R.A.; Lepek, V.C.
Filiación:Inst. de Invest. Biotecnologicas, INTECH, CONICET, Buenos Aires, Argentina
CIHIDECAR, Depto. de Quím. Orgán., UBA, Argentina
IIB-INTECH-UNSAM, INTI, Edificio 24, C. Av. Gen. Paz 5445 entre C. A., Provincia de Buenos Aires, Argentina
Palabras clave:Epimerase/dehydratase family; Glycosyltransferases; LPS and β(1-2) cyclic glucan mutants; calcium; lipopolysaccharide; article; bacterial gene; culture medium; gene expression regulation; genetics; Lotus; metabolism; microbiology; mutation; phenotype; physiology; plant root; Rhizobiaceae; Calcium; Culture Media; Gene Expression Regulation, Bacterial; Genes, Bacterial; Lipopolysaccharides; Lotus; Mutation; Phenotype; Plant Roots; Rhizobiaceae; Lotus tenuis; Mesorhizobium loti
Año:2005
Volumen:18
Número:5
Página de inicio:446
Página de fin:457
DOI: http://dx.doi.org/10.1094/MPMI-18-0446
Título revista:Molecular Plant-Microbe Interactions
Título revista abreviado:Mol. Plant-Microbe Interact.
ISSN:08940282
CODEN:MPMIE
CAS:calcium, 7440-70-2; Calcium, 7440-70-2; Culture Media; Lipopolysaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08940282_v18_n5_p446_DAntuono

Referencias:

  • Allard, S.T.M., Giraud, M., Whitfield, C., Graninger, M., Messner, P., Naismith, J.H., The crystal structure of dTDP-D-glucose 4.6 dehydratase (RmlB) from Salmonella enterica serovar thyphimurium, the second enzyme in the dTDP-L-rhamnose pathway (2001) J. Mol. Biol., 307, pp. 283-295
  • Almirón-Roig, E., Mulholland, F., Gasson, M.J., Griffin, A.M., The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide (2000) Microbiology, 146, pp. 2793-2802
  • Baghwat, A.A., Keister, D.L., Site-directed mutagenesis of the cyclic β-(1 → 3)(1 → 6)-glucan synthesis locus of Bradyrhizobium japonicum (1995) Mol. Plant-Microbe Interact., 8, pp. 366-370
  • Baghwat, A.A., Tully, R.E., Keister, D.L., Isolation and characterization of and ndvB locus from Rhizobium fredii (1992) Mol. Microbiol., 6, pp. 2159-2165
  • Baghwat, A.A., Mithofer, A., Pfeffer, P.E., Kraus, C., Spickers, N., Hotckiss, A., Ebel, J., Keister, D.L., Further studies of the role of cyclic β-glucans in symbiosis. A ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1 → 3)-β-glucosyl (1999) Plant Physiol., 119, pp. 1057-1064
  • Banta, L.M., Bohne, S.D., Lovejoy, D., Dostal, K., Stability of the Agrobacterium tumefaciens VirB10 protein is modulated by growth temperature and periplasmic osmoadaption (1998) J. Bacteriol., 180, pp. 6597-6606
  • Bash, R., Matthysse, A.G., Attachment to roots and virulence of a chvB mutant of Agrobacterium tumefaciens are temperature sensitive (2002) Mol. Plant-Microbe Interact., 15, pp. 160-163
  • Borthakur, D., Barber, C.E., Lamb, J.E., Daniels, M.J., Downie, J.A., Johnston, W.B., A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not beans by R. phaseoli and corrected by cloned DNA from Rhizobium of the phylopathogen Xanthomonas (1986) Mol. Gen. Genet., 203, pp. 320-323
  • Breedveld, M.B., Miller, K., Cyclic glucan of members of family Rhizobiaceae (1994) Microbiol. Rev., 58, pp. 145-161
  • Brewin, N.J., Tissue and cell invasion by Rhizobium: Structure and development of infection threads and symbiosomes (1998) The Rhizobiaceae, pp. 417-429. , H. P. Spaink, A. Kondorosi, and P. J. J. Hooykaas, eds. Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Briones, G., Iñon De Iannino, N., Roset, M., Vigliocco, A., Silva Paulo, P., Ugalde, R., Brucella abortus cyclic β-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells (2001) Infect. Immun., 69, pp. 4528-4535
  • Campbell, G.R.O., Reuhs, B.E., Walker, G.C., Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 3928-3943
  • Campbell, G.R.O., Sharypova, E.A., Scheidle, H., Jones, K.M., Niehaus, K., Becker, A., Walker, G.C., Striking complexity of lipopolysaccharide defects in a collection of Sinorhizobium meliloti mutants (2003) J. Bacteriol., 185, pp. 3853-3862
  • Carlson, R.W., Kalembasa, W.S., Turowski, D., Pachori, P., Noel, K.D., Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development (1987) J. Bacteriol., 158, pp. 1012-1017
  • Carlson, R.W., Reuhs, B., Chen, T.B., Bhat, U.R., Noel, K.D., Lipopolysaccharide core structures in Rhizobium etli and mutants deficient in O-antigen (1995) J. Biol. Chem., 270, pp. 11783-11788
  • Cava, J.R., Elías, P.M., Turowski, D.A., Noel, K.D., Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants (1989) J. Bacteriol., 171, pp. 8-15
  • Colebatch, G., Kloska, S., Trevaskis, B., Freund, S., Altmann, T., Udvardi, M.K., Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays (2002) Mol. Plant-Microbe Interact., 15, pp. 411-420
  • Douglas, C.J., Staneloni, R.J., Rubin, R.A., Nester, E.W., Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region (1985) J. Bacteriol., 161, pp. 850-860
  • Dunlap, J., Minami, E., Bhagwat, A.A., Keister, D.L., Stacey, G., Nodule development induced by mutants of Bradyrhizobium Japonicum defective in cyclic β-glucan synthesis (1996) Mol. Plant-Microbe Interact., 9, pp. 546-555
  • Erhardt, D.W., Wais, R., Long, S.R., Calcium spiking in plant root hairs responding to Rhizobium nodulation signals (1996) Cell, 85, pp. 673-681
  • Fahraeus, G., The infection of clover root hair by nodule bacteria studied by a single slide technique (1957) J. Gen. Microbiol., 16, pp. 374-381
  • Freer, E., Moreno, E., Moriyón, I., Pizarro-Cerdá, J., Weintraub, A., Gorvel, J.P., Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts (1996) J. Bacteriol., 178, pp. 5867-5876
  • Gage, D.J., Bobo, T., Long, S.R., Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa) (1996) J. Bacteriol., 178, pp. 7159-7166
  • García De Los Santos, A., Brom, S., Characterization of two plasmid-borne lpsβ loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants (1997) Mol. Plant-Microbe Interact., 10, pp. 891-902
  • Geremía, R., Cavaignac, S., Zorreguieta, A., Toro, N., Olivares, J., Ugalde, R., A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharides but fails to form β(1-2)glucan (1987) J. Bacteriol., 169, pp. 880-884
  • Geurts, R., Bisseling, T., Rhizobium Nod factor perception and signaling (2002) Plant Cell, 14, pp. S239-S249
  • Graninger, M., Nidetzky, B., Heinrichs, D., Whitfield, C., Messner, P., Characterization of dTDP-dehydrorhamnose 3,5-epimerase and dTDP-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Thyphimurium LT2 (1999) J. Biol. Chem., 274, pp. 25069-25077
  • Graninger, M., Kneidinger, B., Bruno, K., Scheber, I.A., Messner, P., Homolgs of the Rml enzymes from Salmonella enterica are responsible for dTDP-β-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155 (2002) Appl. Environ. Microbiol., 68, pp. 3708-3715
  • Gudlavalleti, S.K., Forsberg, L.S., Structural characterization of the lipid a component of Sinorhizobium sp. NGR234 rough and smooth form lipopolysaccharide. Demonstration that the distal amide-linked acyloxyacyl residue containing the long chain fatty acid is conserved in Rhizobium and Sinorhizobium sp. (2003) J. Biol. Chem., 278, pp. 3957-3968
  • Hitchcock, P.J., Brown, T.M., Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels (1983) J. Bacteriol., 154, pp. 269-277
  • Hotter, G.S., Scott, D.B., Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host (1991) J. Bacteriol., 173, pp. 851-859
  • Iñon De Iannino, N., Briones, G., Kreiman, G., Ugalde, R., Characterization of the biosynthesis of β(1-2) cyclic glucan in R. fredii. β(1-2) glucan has no apparent role in nodule invasion of MC Call and Peking soybean cultivars (1996) Cell. Mol. Biol., 42, pp. 617-629
  • Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Tabata, S., Complete genome structure of the nitrogen-fixing bacterium Mesorhizobium loti (2000) DNA Res., 7, pp. 331-338
  • Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Tabata, S., Complete genome structure of the nitrogen-fixing bacterium Mesorhizobium loti. Supplement (2000) DNA Res., 7, pp. 381-406
  • Kannenberg, E.L., Carlson, R.W., Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development (2001) Mol. Microbiol., 39, pp. 379-391
  • Kannenberg, E.L., Reuhs, B.L., Forsberg, L.S., Carlson, R.W., Lipopolysaccharides and K-antigens: Their structures, biosynthesis and function (1998) The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, pp. 119-154. , H. P. Spaink, A. Kondorosi, and P. J. J. Hooykaas, eds. Kluwer Academic Publishers, Dordrecht, The Netherlands
  • Kijne, J.W., The Rhizobium infection process (1992) Biological Nitrogen Fixation, pp. 349-398. , G. Stacey, R. H. Burris, and H. J. Evans, eds. Chapman and Hall, New York
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop II, R.M., Peterson, K.M., Four new derivatives of the broad-host-range cloning vector pBBRIMCs, carrying different antibiotic-resistance cassettes (1995) Gene, 166, pp. 175-176
  • Lagares, A., Hozbor, D.F., Niehaus, K., Pich Otero, A.J.L., Lorenzen, J., Arnold, W., Puhler, A., Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis (1992) J. Bacteriol., 183, pp. 1248-1258
  • Lepek, V.C., Navarro De Navarro, Y., Ugalde, R.A., Synthesis of β(1-2) glucan in Rhizobium loti (1990) Arch. Microbiol., 155, pp. 35-41
  • Lepek, V.C., D'Antuono, A.L., Tomatis, P.E., Ugalde, J.E., Giambiagi, S., Ugalde, R.A., Analysis of Mesorhizobium loti glycogen operon: Effect of phosphoglucomutase (pgm) and glycogen synthase (glgA) null mutants on nodulation of Lotus tenuis (2002) Mol. Plant-Microbe Interact., 15, pp. 368-375
  • Lerouge, I., Vanderleyden, J., O-antigen structural variation: Mechanisms and possible roles in animal/plant-microbe interactions (2001) FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev., 26, pp. 17-47
  • Miller, K.J., Kennedy, E.P., Reinhold, V.N., Osmotic adaptation by gram-negative bacteria: Possible role for periplasmic oligosaccharides (1986) Science, 231, pp. 48-51
  • Noel, K.D., Duelli, D.M., Rhizobium lipopolysaccharide and its role in symbiosis (2000) Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process, pp. 415-431. , E. W. Triplett, ed. Horizon Scientific Press, Wymondham, U.K
  • Noel, K.D., Forsberg, L.S., Carlson, R.W., Varying the abundance of O antigen in Rhizobium etli and its effect on symbiosis with Phaseolus vulgaris (2000) J. Bacteriol., 182, pp. 5317-5324
  • Patriarca, E.J., Tate, R., Iaccarino, M., Key role of bacterial NH4+ metabolism in Rhizobium-plant symbiosis (2002) Microbiol. Mol. Biol. Rev., 66, pp. 203-222
  • Pellock, B.J., Cheng, H., Walker, G.C., Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides (2000) J. Bacteriol., 182, pp. 4310-4318
  • Perotto, S., Brewin, N.J., Kannenberg, E.L., Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841 (1994) Mol. Plant-Microbe Interact., 7, pp. 99-112
  • Peschel, A., Jack, R.W., Otto, M., Collins, L.V., Staubitz, P., Nicholson, G., Kalbacher, H., Wan Strijp, J.A., Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with 1-lysine (2001) J. Exp. Med., 193, pp. 1067-1076
  • Piekarowicz, A., Stein, D.C., Biochemical properties of Neisseria gonorrhoeae LgtE (2002) J. Bacteriol., 184, pp. 6410-6416
  • Reuhs, B.L., Williams, M.N.V., Kim, J.S., Carlson, R.W., Coté, F., Suppression of the Fix phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide (1995) J. Bacteriol., 177, pp. 4289-4296
  • Reuhs, B.L., Geller, D.P., Kim, J.S., Fox, J.E., Kumar Kolli, V.S., Pueppke, S.G., Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens (1998) Appl. Environ. Microbiol., 64, pp. 4930-4938
  • Robinson, J.B., Tuovinen, O.H., Bauer, W.D., Role of divalent cations in the subunit associations of complex flagella from Rhizobium meliloti (1992) J. Bacteriol., 174, pp. 3896-3902
  • Russa, R., Urbanik-Sypniewska, T., Lindstrom, K., Mayer, H., Chemical characterization of two lipopolysaccharides species isolated from Rhizobium loti NZP2213 (1995) Arch. Microbiol., 163, pp. 345-351
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  • Schagger, H., Von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa (1987) Anal. Biochem., 166, pp. 368-379
  • Spaink, H.P., Root nodulation and infection factors produced by rhizobial bacteria (2000) Annu. Rev. Microbiol., 54, pp. 257-288
  • Stacey, G., So, J.-S., Roth, L.E., Lakshmi, S.K.B., Carlson, R.W., A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation (1991) Mol. Plant-Microbe Interact., 4, pp. 332-340
  • Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneky, T., Tabata, S., Parniske, M., A plant receptor-like kinase required for both bacterial and fungal symbiosis (2002) Nature, 417, pp. 959-962
  • Swart, S., Logman, T.J.J., Lugtenberg, B.J.J., Smit, G., Kijne, J.W., Several phcnotypic changes in the cell envelope of Agrobacterium tumefaciens chvB mutants are prevented by calcium limitation (1994) Arch. Microbiol., 161, pp. 310-315
  • Trevelyan, V.E., Procter, D.P., Harrison, J.S., Detection of sugar on paper chromatography (1950) Nature (Lond.), 166, pp. 444-445
  • Tsai, C., Frisch, C.E., A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels (1982) Anal. Biochem., 119, pp. 115-119
  • Turner, S.L., Zhang, X., Li, F., Young, P.W., What does bacterial genome sequence represent? Misassignment of MAFF 303099 to the genospecies Mesorhizobium loti (2002) Microbiology, 148, pp. 3330-3331
  • Udvardi, M.K., Day, D.A., Metabolite transport across symbiotic membranes of legume nodules (1997) Annu. Rev. Plant Physiol., 48, pp. 493-523
  • Ugalde, J.E., Czibener, C., Feldman, M.F., Ugalde, R.A., Identification and characterization of the Brucella abortus phosphoglucomutase gen: Role of lipopolysaccharide in virulence and intracellular multiplication (2000) Infect. Immun., 68, pp. 5716-5723
  • Vinuesa, P., Nwumann-Silkow, F., Pacios-Bras, C., Spaink, H.P., Martinez-Romero, E., Werner, D., Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness (2003) Mol. Plant-Microbe Interact., 16, pp. 159-168
  • Wang, S., Gabriel, O., Biological mechanisms involved in the formation of deoxy sugars (1969) J. Biol. Chem., 244, pp. 3430-3437
  • Webb, K.J., Skot, L., Nicholson, M.N., Jorgensen, B., Mizen, S., Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus (2000) Mol. Plant-Microbe Interact., 13, pp. 606-616
  • Westphal, O., Jann, K., Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure (1965) Methods Carbohydr. Chem., 5, pp. 83-91

Citas:

---------- APA ----------
D'Antuono, A.L., Casabuono, A., Couto, A., Ugalde, R.A. & Lepek, V.C. (2005) . Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Molecular Plant-Microbe Interactions, 18(5), 446-457.
http://dx.doi.org/10.1094/MPMI-18-0446
---------- CHICAGO ----------
D'Antuono, A.L., Casabuono, A., Couto, A., Ugalde, R.A., Lepek, V.C. "Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis" . Molecular Plant-Microbe Interactions 18, no. 5 (2005) : 446-457.
http://dx.doi.org/10.1094/MPMI-18-0446
---------- MLA ----------
D'Antuono, A.L., Casabuono, A., Couto, A., Ugalde, R.A., Lepek, V.C. "Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis" . Molecular Plant-Microbe Interactions, vol. 18, no. 5, 2005, pp. 446-457.
http://dx.doi.org/10.1094/MPMI-18-0446
---------- VANCOUVER ----------
D'Antuono, A.L., Casabuono, A., Couto, A., Ugalde, R.A., Lepek, V.C. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Mol. Plant-Microbe Interact. 2005;18(5):446-457.
http://dx.doi.org/10.1094/MPMI-18-0446