Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The solutions of the nonlinear diffusion equation ht = (h mhχ)χ may have a waiting-time, i.e., an initial finite time interval tω in which the front is at rest before starting to move. The theory gives us the value of t ω only in a few special cases, when it is determined by the local behaviour near the front of the initial profile g(χ). However, in many instances tω depends on the global behaviour of g(χ), and in these cases the theory provides only upper and lower bounds that frequently may not be very helpful to estimate the tω. Here we discuss some global attributes that influence tω. Then we employ the values of tω obtained numerically for initial profiles of the power law type to obtain, for general initial profiles, bounds more stringent than those given by the current theory. © 2004 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Bounds of waiting-time in nonlinear diffusion
Autor:Perazzo, C.A.; Gratton, J.
Filiación:Universidad Favaloro, Solís 453 (1078), Buenos Aires, Argentina
INFIP, Fac. De Cie. Exact. Y N., Ciudad Universitaria (1428), Pabellón I, Buenos Aires, Argentina
Palabras clave:Bounds; Nonlinear diffusion; Waiting-time; Approximation theory; Electromagnetic fields; Finite element method; Groundwater flow; Set theory; Superconducting materials; Thermal conductivity; Bounds; Nonlinear diffusion; Viscous gravity currents; Waiting-time; Nonlinear equations
Año:2004
Volumen:17
Número:11
Página de inicio:1253
Página de fin:1259
DOI: http://dx.doi.org/10.1016/j.aml.2004.01.002
Título revista:Applied Mathematics Letters
Título revista abreviado:Appl Math Lett
ISSN:08939659
CODEN:AMLEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v17_n11_p1253_Perazzo

Referencias:

  • Polubarinova-Kochina, P.Y., (1962) Theory of Ground Water Movement, , Princeton Univ. Press New York
  • Eagleson, P.S., (1970) Dynamic Hydrology, , McGraw-Hill
  • Peletier, L.A., The porous media equation (1981) Applications of Nonlinear Analysis in the Physical Sciences, , Pitman Adv. Pub. Prog. Boston
  • Gurtin, M.E., MacCamy, R.C., On the diffusion of biological populations (1977) Math. Biosc., 33, p. 35
  • Muskat, M., (1937) The Flow of Homogeneous Fluids through Porous Media, , McGraw-Hill Boston
  • Buckmaster, J., Viscous sheet advancing over dry beds (1977) J. Fluid Mech., 81, p. 735
  • Huppert, H.E., The propagation of two-dimensional viscous gravity currents over a rigid horizontal surface (1982) J. Fluid Mech., 121, p. 43
  • Gratton, J., Minotti, F., Self-similar viscous gravity currents: Phase plane formalism (1990) J. Fluid Mech., 210, p. 155
  • Zel'dovich, Ya.B., Raizer, Yu.P., (1966) Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, , Academic Press New York
  • Marshak, R.E., Effect of radiation on shock wave behavior (1958) Phys. Fluids, 1, p. 24
  • Pert, G.J., A class of similar solutions of the non-linear diffusion equation (1977) J. Phys. A, 10 (4), p. 583
  • Larsen, E.W., Pomraning, G.C., Asymptotic analysis of nonlinear Marshak waves (1980) SIAM J. Appl. Math., 39, p. 201
  • Mayergoyz, I.D., (1998) Nonlinear Diffusion of Electromagnetic Fields, , Academic Press New York
  • Drazer, G., Wio, H.S., Tsallis, C., Anomalous diffusion with absorption: Exact time-dependent solutions (2000) Phys. Rev. E, 61, p. 1417
  • Aronson, D.G., Caffarelli, L.A., Kamin, S., How an initially stationary interface begins to move in porous medium flow (1983) SIAM J. Math. Anal., 14, p. 639
  • Vázquez, J.L., Asymptotic behavior and propagation properties of the one-dimensional flow of gas in a porous medium, Trans (1983) Amer. Math. Soc., 277, p. 507
  • Kath, W.L., Cohen, D.S., Waiting time behavior in a nonlinear diffusion equation (1982) Stud. Appl. Math., 67, p. 79
  • Vázquez, J.L., The interface of one-dimensional flows in porous media (1984) Trans. Amer. Math. Soc., 285, p. 717
  • Lacey, A.A., Initial motion of the free boundary for a non-linear diffusion equation (1983) IMA J. Appl. Math., 31, p. 113
  • Gratton, J., Vigo, C.L.M., Evolution of self-similarity, and other properties of waiting-time solutions of the porous medium equation: The case of viscous gravity currents (1998) European J. Appl. Math., 9, p. 327
  • Aronson, D.G., Caffarelli, L.A., Vázquez, J.L., Interfaces with a corner point in one-dimensional porous medium flow (1985) Comm. Pure Appl. Math., 38, p. 375
  • Tomoeda, K., Mimura, M., Numerical approximations to interface curves for a porous media equation (1983) Hiroshima Math. J., 13, p. 273
  • Perazzo, C., Vigo, C., Gratton, J., Corner layer properties and intermediate asymptotics of waiting time solutions of nonlinear diffusion equations (2003) Int. J. Heat & Technology, 21, p. 121

Citas:

---------- APA ----------
Perazzo, C.A. & Gratton, J. (2004) . Bounds of waiting-time in nonlinear diffusion. Applied Mathematics Letters, 17(11), 1253-1259.
http://dx.doi.org/10.1016/j.aml.2004.01.002
---------- CHICAGO ----------
Perazzo, C.A., Gratton, J. "Bounds of waiting-time in nonlinear diffusion" . Applied Mathematics Letters 17, no. 11 (2004) : 1253-1259.
http://dx.doi.org/10.1016/j.aml.2004.01.002
---------- MLA ----------
Perazzo, C.A., Gratton, J. "Bounds of waiting-time in nonlinear diffusion" . Applied Mathematics Letters, vol. 17, no. 11, 2004, pp. 1253-1259.
http://dx.doi.org/10.1016/j.aml.2004.01.002
---------- VANCOUVER ----------
Perazzo, C.A., Gratton, J. Bounds of waiting-time in nonlinear diffusion. Appl Math Lett. 2004;17(11):1253-1259.
http://dx.doi.org/10.1016/j.aml.2004.01.002