Artículo

Vinuesa, A.; Bentivegna, M.; Calfa, G.; Filipello, F.; Pomilio, C.; Bonaventura, M.M.; Lux-Lantos, V.; Matzkin, M.E.; Gregosa, A.; Presa, J.; Matteoli, M.; Beauquis, J.; Saravia, F. "Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles" (2018) Molecular Neurobiology
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Adolescence is a transitional period from childhood to adulthood characterized by puberty and brain maturation involving behavioral changes and environmental vulnerability. Diet is one of the factors affecting brain health, potentially leading to long-lasting effects. Hence, we studied the impact of early exposure (P21-60) to a high-fat diet (HFD) on mouse hippocampus, analyzing inflammation, adult neurogenesis, dendritic spine plasticity, and spatial memory. Glycemia and seric pro-inflammatory IL1β were higher in HFD mice without differences on body weight. In the HFD hippocampus, neuroinflammation was evidenced by Iba1+ cells reactivity together with a higher expression of TNFα and IL1β while the neurogenic capability in the dentate gyrus was strongly reduced. We found a predominance of immature Dil-labeled dendritic spines from CA1 neurons along with diminished levels of the scaffold protein Shank2, suggesting a defective connectivity. Moreover, the HFD group exhibited spatial memory alterations. To elucidate whether microglia could be mediating HFD-associated neuronal changes, the lipotoxic context was emulated by incubating primary microglia with palmitate, a saturated fatty acid present in HFD. Palmitate induced a pro-inflammatory profile as shown by secreted cytokine levels. The isolated exosome fraction from palmitate-stimulated microglia induced an immature dendritic spine phenotype in primary GFP+ hippocampal neurons, in line with the in vivo findings. These results provide novel data concerning microglia to neuron communication and highlight that fat excess during a short and early period of life could negatively impact on cognition and synaptic plasticity in a neuroinflammatory context, where microglia-derived exosomes could be implicated. [Figure not available: see fulltext.]. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Registro:

Documento: Artículo
Título:Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles
Autor:Vinuesa, A.; Bentivegna, M.; Calfa, G.; Filipello, F.; Pomilio, C.; Bonaventura, M.M.; Lux-Lantos, V.; Matzkin, M.E.; Gregosa, A.; Presa, J.; Matteoli, M.; Beauquis, J.; Saravia, F.
Filiación:Neurobiology of Aging, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Milan, Italy
Palabras clave:Adolescence; Dendritic spines; Exosomes; High-fat diet; Hippocampus; Microglia
Año:2018
DOI: http://dx.doi.org/10.1007/s12035-018-1435-8
Título revista:Molecular Neurobiology
Título revista abreviado:Mol. Neurobiol.
ISSN:08937648
CODEN:MONBE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08937648_v_n_p_Vinuesa

Referencias:

  • Patton, G.C., Olsson, C.A., Skirbekk, V., Saffery, R., Wlodek, M.E., Azzopardi, P.S., Stonawski, M., Sawyer, S.M., Adolescence and the next generation (2018) Nature, 554 (7693), pp. 458-466. , http://sci-hub.tw/10.1038/nature25759, PID: 29469095, COI: 1:CAS:528:DC%2BC1cXjtFCrt7o%3D
  • Casey, B.J., Duhoux, S., Malter Cohen, M., Adolescence: what do transmission, transition, and translation have to do with it? (2010) Neuron, 67 (5), pp. 749-760. , http://sci-hub.tw/10.1016/j.neuron.2010.08.033, PID: 20826307, COI: 1:CAS:528:DC%2BC3cXhtFamtb%2FO
  • Walker, D.M., Bell, M.R., Flores, C., Gulley, J.M., Willing, J., Paul, M.J., Adolescence and reward: making sense of neural and behavioral changes amid the chaos (2017) J Neurosci, 37 (45), pp. 10855-10866. , http://sci-hub.tw/10.1523/JNEUROSCI.1834-17.2017, PID: 29118215, COI: 1:CAS:528:DC%2BC1cXhtlCjs77I
  • Spear, L.P., The adolescent brain and age-related behavioral manifestations (2000) Neurosci Biobehav Rev, 24 (4), pp. 417-463. , PID: 10817843, COI: 1:STN:280:DC%2BD3c3nvVagsg%3D%3D
  • Shin, S.Y., Han, S.H., Woo, R.S., Jang, S.H., Min, S.S., Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation (2016) Neuroscience, 316, pp. 221-231. , http://sci-hub.tw/10.1016/j.neuroscience.2015.12.041, PID: 26733385, COI: 1:CAS:528:DC%2BC28XhtlCktw%3D%3D
  • Spear, L.P., Adolescent neurodevelopment (2013) J Adolesc Health, 52, pp. S7-S13. , http://sci-hub.tw/10.1016/j.jadohealth.2012.05.006, PID: 23332574
  • Venn, A.J., Thomson, R.J., Schmidt, M.D., Cleland, V.J., Curry, B.A., Gennat, H.C., Dwyer, T., Overweight and obesity from childhood to adulthood: a follow-up of participants in the 1985 Australian Schools Health and Fitness Survey (2007) Med J Aust, 186 (9), pp. 458-460. , PID: 17484707
  • Dey, A., Hao, S., Wosiski-Kuhn, M., Stranahan, A.M., Glucocorticoid-mediated activation of GSK3beta promotes tau phosphorylation and impairs memory in type 2 diabetes (2017) Neurobiol Aging, 57, pp. 75-83. , http://sci-hub.tw/10.1016/j.neurobiolaging.2017.05.010, PID: 28609678, COI: 1:CAS:528:DC%2BC2sXptlSiu7g%3D
  • Xu, W.L., Atti, A.R., Gatz, M., Pedersen, N.L., Johansson, B., Fratiglioni, L., Midlife overweight and obesity increase late-life dementia risk: a population-based twin study (2011) Neurology, 76 (18), pp. 1568-1574. , PID: 21536637, COI: 1:STN:280:DC%2BC3MvnvFantw%3D%3D
  • McNay, E.C., Ong, C.T., McCrimmon, R.J., Cresswell, J., Bogan, J.S., Sherwin, R.S., Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance (2010) Neurobiol Learn Mem, 93 (4), pp. 546-553. , http://sci-hub.tw/10.1016/j.nlm.2010.02.002, PID: 20176121, COI: 1:CAS:528:DC%2BC3cXlsFWisr4%3D
  • Whitmer, R.A., Gustafson, D.R., Barrett-Connor, E., Haan, M.N., Gunderson, E.P., Yaffe, K., Central obesity and increased risk of dementia more than three decades later (2008) Neurology, 71 (14), pp. 1057-1064. , http://sci-hub.tw/10.1212/01.wnl.0000306313.89165.ef, PID: 18367704, COI: 1:STN:280:DC%2BD1cnjtFGrsw%3D%3D
  • Vinuesa, A., Pomilio, C., Menafra, M., Bonaventura, M.M., Garay, L., Mercogliano, M.F., Schillaci, R., Saravia, F., Juvenile exposure to a high fat diet promotes behavioral and limbic alterations in the absence of obesity (2016) Psychoneuroendocrinology, 72, pp. 22-33. , http://sci-hub.tw/10.1016/j.psyneuen.2016.06.004, PID: 27337091, COI: 1:CAS:528:DC%2BC28XhtFSis7nN
  • Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Gross, C.T., Synaptic pruning by microglia is necessary for normal brain development (2011) Science, 333 (6048), pp. 1456-1458. , http://sci-hub.tw/10.1126/science.1202529, PID: 21778362, COI: 1:CAS:528:DC%2BC3MXhtFWqurbM
  • Kramer-Albers, E.M., Hill, A.F., Extracellular vesicles: interneural shuttles of complex messages (2016) Curr Opin Neurobiol, 39, pp. 101-107. , http://sci-hub.tw/10.1016/j.conb.2016.04.016, PID: 27183381, COI: 1:CAS:528:DC%2BC28Xnslant7o%3D
  • Budnik, V., Ruiz-Canada, C., Wendler, F., Extracellular vesicles round off communication in the nervous system (2016) Nat Rev Neurosci, 17 (3), pp. 160-172. , http://sci-hub.tw/10.1038/nrn.2015.29, PID: 26891626, COI: 1:CAS:528:DC%2BC28XivVCisLg%3D
  • Rajendran, L., Bali, J., Barr, M.M., Court, F.A., Kramer-Albers, E.M., Picou, F., Raposo, G., Breakefield, X.O., Emerging roles of extracellular vesicles in the nervous system (2014) J Neurosci, 34 (46), pp. 15482-15489. , http://sci-hub.tw/10.1523/JNEUROSCI.3258-14.2014, PID: 25392515, COI: 1:CAS:528:DC%2BC2MXlslaktA%3D%3D
  • Lai, C.P., Breakefield, X.O., Role of exosomes/microvesicles in the nervous system and use in emerging therapies (2012) Front Physiol, 3, p. 228. , http://sci-hub.tw/10.3389/fphys.2012.00228, PID: 22754538, COI: 1:CAS:528:DC%2BC38XhtVCqsbjO
  • Colombo, M., Raposo, G., Thery, C., Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles (2014) Annu Rev Cell Dev Biol, 30, pp. 255-289. , http://sci-hub.tw/10.1146/annurev-cellbio-101512-122326, PID: 25288114, COI: 1:CAS:528:DC%2BC2cXitVeit7jJ
  • Thery, C., Ostrowski, M., Segura, E., Membrane vesicles as conveyors of immune responses (2009) Nat Rev Immunol, 9 (8), pp. 581-593. , http://sci-hub.tw/10.1038/nri2567, PID: 19498381, COI: 1:CAS:528:DC%2BD1MXmvVWntr0%3D
  • Cocucci, E., Racchetti, G., Meldolesi, J., Shedding microvesicles: artefacts no more (2009) Trends Cell Biol, 19 (2), pp. 43-51. , http://sci-hub.tw/10.1016/j.tcb.2008.11.003, PID: 19144520, COI: 1:CAS:528:DC%2BD1MXhs1amt7Y%3D
  • Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Simons, M., Ceramide triggers budding of exosome vesicles into multivesicular endosomes (2008) Science, 319 (5867), pp. 1244-1247. , http://sci-hub.tw/10.1126/science.1153124, PID: 18309083, COI: 1:CAS:528:DC%2BD1cXisVSksLY%3D
  • Stuffers, S., Sem Wegner, C., Stenmark, H., Brech, A., Multivesicular endosome biogenesis in the absence of ESCRTs (2009) Traffic, 10 (7), pp. 925-937. , http://sci-hub.tw/10.1111/j.1600-0854.2009.00920.x, PID: 19490536, COI: 1:CAS:528:DC%2BD1MXotFGrsbo%3D
  • van Niel, G., D’Angelo, G., Raposo, G., Shedding light on the cell biology of extracellular vesicles (2018) Nat Rev Mol Cell Biol, , http://sci-hub.tw/10.1038/nrm.2017.125
  • Potolicchio, I., Carven, G.J., Xu, X., Stipp, C., Riese, R.J., Stern, L.J., Santambrogio, L., Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism (2005) J Immunol, 175 (4), pp. 2237-2243. , PID: 16081791, COI: 1:CAS:528:DC%2BD2MXntVSrtbk%3D
  • Abels, E.R., Breakefield, X.O., Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake (2016) Cell Mol Neurobiol, 36 (3), pp. 301-312. , http://sci-hub.tw/10.1007/s10571-016-0366-z, PID: 27053351, COI: 1:CAS:528:DC%2BC28XlvFCmurk%3D
  • Bernimoulin, M., Waters, E.K., Foy, M., Steele, B.M., Sullivan, M., Falet, H., Walsh, M.T., Wagner, D.D., Differential stimulation of monocytic cells results in distinct populations of microparticles (2009) J Thromb Haemost, 7 (6), pp. 1019-1028. , http://sci-hub.tw/10.1111/j.1538-7836.2009.03434.x, PID: 19548909, COI: 1:CAS:528:DC%2BD1MXotFOhurs%3D
  • Turola, E., Furlan, R., Bianco, F., Matteoli, M., Verderio, C., Microglial microvesicle secretion and intercellular signaling (2012) Front Physiol, 3. , http://sci-hub.tw/10.3389/fphys.2012.00149, PID: 22661954, COI: 1:CAS:528:DC%2BC38XptV2itro%3D
  • Bahrini, I., Song, J.H., Diez, D., Hanayama, R., Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia (2015) Sci Rep, 5, p. 7989. , http://sci-hub.tw/10.1038/srep07989, PID: 25612542, COI: 1:CAS:528:DC%2BC2MXhtFGgurvM
  • Fruhbeis, C., Frohlich, D., Kuo, W.P., Kramer-Albers, E.M., Extracellular vesicles as mediators of neuron-glia communication (2013) Front Cell Neurosci, 7, p. 182. , http://sci-hub.tw/10.3389/fncel.2013.00182, PID: 24194697, COI: 1:CAS:528:DC%2BC2cXhslKisrbN
  • Joshi, P., Benussi, L., Furlan, R., Ghidoni, R., Verderio, C., Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on abeta-vesicle interaction (2015) Int J Mol Sci, 16 (3), pp. 4800-4813. , http://sci-hub.tw/10.3390/ijms16034800, PID: 25741766, COI: 1:CAS:528:DC%2BC2MXlvVKrt7g%3D
  • Kong, S.M., Chan, B.K., Park, J.S., Hill, K.J., Aitken, J.B., Cottle, L., Farghaian, H., Cooper, A.A., Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes (2014) Hum Mol Genet, 23 (11), pp. 2816-2833. , http://sci-hub.tw/10.1093/hmg/ddu099, PID: 24603074, COI: 1:CAS:528:DC%2BC2cXnslCqtLg%3D
  • Paolicelli, R.C., Bergamini, G., Rajendran, L., Cell-to-cell communication by extracellular vesicles: focus on microglia (2018) Neuroscience, , http://sci-hub.tw/10.1016/j.neuroscience.2018.04.003
  • Yang, Y., Boza-Serrano, A., Dunning, C.J.R., Clausen, B.H., Lambertsen, K.L., Deierborg, T., Inflammation leads to distinct populations of extracellular vesicles from microglia (2018) J Neuroinflammation, 15 (1), p. 168. , http://sci-hub.tw/10.1186/s12974-018-1204-7, PID: 29807527
  • Verderio, C., Muzio, L., Turola, E., Bergami, A., Novellino, L., Ruffini, F., Riganti, L., Furlan, R., Myeloid microvesicles are a marker and therapeutic target for neuroinflammation (2012) Ann Neurol, 72 (4), pp. 610-624. , http://sci-hub.tw/10.1002/ana.23627, PID: 23109155, COI: 1:CAS:528:DC%2BC38Xhs1ShsbrI
  • Bianco, F., Pravettoni, E., Colombo, A., Schenk, U., Moller, T., Matteoli, M., Verderio, C., Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia (2005) J Immunol, 174 (11), pp. 7268-7277. , PID: 15905573, COI: 1:CAS:528:DC%2BD2MXkt1Olsr8%3D
  • Takenouchi, T., Tsukimoto, M., Iwamaru, Y., Sugama, S., Sekiyama, K., Sato, M., Kojima, S., Kitani, H., Extracellular ATP induces unconventional release of glyceraldehyde-3-phosphate dehydrogenase from microglial cells (2015) Immunol Lett, 167 (2), pp. 116-124. , http://sci-hub.tw/10.1016/j.imlet.2015.08.002, PID: 26277554, COI: 1:CAS:528:DC%2BC2MXhsVaju7rN
  • Huang, S., Ge, X., Yu, J., Han, Z., Yin, Z., Li, Y., Chen, F., Lei, P., Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons (2018) FASEB J, 32 (1), pp. 512-528. , http://sci-hub.tw/10.1096/fj.201700673R, PID: 28935818, COI: 1:CAS:528:DC%2BC1cXhtlKnt7rL
  • Dutta, S., Sengupta, P., Men and mice: relating their ages (2016) Life Sci, 152, pp. 244-248. , http://sci-hub.tw/10.1016/j.lfs.2015.10.025, PID: 26596563, COI: 1:CAS:528:DC%2BC2MXhslyrtLzJ
  • Valdivia, S., Patrone, A., Reynaldo, M., Perello, M., Acute high fat diet consumption activates the mesolimbic circuit and requires orexin signaling in a mouse model (2014) PLoSOne, 9 (1). , COI: 1:CAS:528:DC%2BC2cXlsVWmtLo%3D
  • Bonaventura, M.M., Catalano, P.N., Chamson-Reig, A., Arany, E., Hill, D., Bettler, B., Saravia, F., Lux-Lantos, V.A., GABAB receptors and glucose homeostasis: evaluation in GABAB receptor knockout mice (2008) Am J Physiol Endocrinol Metab, 294 (1), pp. E157-E167. , PID: 17971510, COI: 1:CAS:528:DC%2BD1cXhtVWrsL4%3D
  • Beauquis, J., Vinuesa, A., Pomilio, C., Pavia, P., Galvan, V., Saravia, F., Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer’s disease (2014) Hippocampus, 24 (3), pp. 257-269. , PID: 24132937, COI: 1:CAS:528:DC%2BC2cXislersrw%3D
  • Beauquis, J., Homo-Delarche, F., Giroix, M.H., Ehses, J., Coulaud, J., Roig, P., Portha, B., Saravia, F., Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats (2010) Exp Neurol, 222 (1), pp. 125-134. , PID: 20045412, COI: 1:CAS:528:DC%2BC3cXhvFGns7Y%3D
  • Pomilio, C., Pavia, P., Gorojod, R.M., Vinuesa, A., Alaimo, A., Galvan, V., Kotler, M.L., Saravia, F., Glial alterations from early to late stages in a model of Alzheimer’s disease: evidence of autophagy involvement in Abeta internalization (2016) Hippocampus, 26 (2), pp. 194-210. , http://sci-hub.tw/10.1002/hipo.22503, PID: 26235241, COI: 1:CAS:528:DC%2BC28Xjs12gtLk%3D
  • Pozzo-Miller, L.D., Inoue, T., Murphy, D.D., Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices (1999) J Neurophysiol, 81 (3), pp. 1404-1411. , http://sci-hub.tw/10.1152/jn.1999.81.3.1404, PID: 10085365, COI: 1:CAS:528:DyaK1MXitFCmsLY%3D
  • Giachero, M., Calfa, G.D., Molina, V.A., Hippocampal structural plasticity accompanies the resulting contextual fear memory following stress and fear conditioning (2013) Learn Mem, 20 (11), pp. 611-616. , http://sci-hub.tw/10.1101/lm.031724.113, PID: 24129097
  • Koh, I.Y., Lindquist, W.B., Zito, K., Nimchinsky, E.A., Svoboda, K., An image analysis algorithm for dendritic spines (2002) Neural Comput, 14 (6), pp. 1283-1310. , http://sci-hub.tw/10.1162/089976602753712945, PID: 12020447
  • Tyler, W.J., Pozzo-Miller, L., Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones (2003) J Physiol, 553, pp. 497-509. , http://sci-hub.tw/10.1113/jphysiol.2003.052639, PID: 14500767, COI: 1:CAS:528:DC%2BD2cXitlWmtA%3D%3D
  • Calfa, G., Chapleau, C.A., Campbell, S., Inoue, T., Morse, S.J., Lubin, F.D., Pozzo-Miller, L., HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons (2012) Hippocampus, 22 (7), pp. 1493-1500. , http://sci-hub.tw/10.1002/hipo.20990, PID: 22161912, COI: 1:CAS:528:DC%2BC38XovVWqurk%3D
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 7 (72), pp. 248-254
  • Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acids Res, 29 (9). , PID: 11328886, COI: 1:STN:280:DC%2BD38nis12jtw%3D%3D
  • Filipello, F., Morini, R., Corradini, I., Zerbi, V., Canzi, A., Michalski, B., Erreni, M., Matteoli, M., The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity (2018) Immunity, 48 (5), pp. 979-991 e978. , http://sci-hub.tw/10.1016/j.immuni.2018.04.016, PID: 29752066, COI: 1:CAS:528:DC%2BC1cXptFSrt7g%3D
  • Oliveira, A.F., Cunha, D.A., Ladriere, L., Igoillo-Esteve, M., Bugliani, M., Marchetti, P., Cnop, M., In vitro use of free fatty acids bound to albumin: a comparison of protocols (2015) BioTechniques, 58 (5), pp. 228-233. , http://sci-hub.tw/10.2144/000114285, PID: 25967901, COI: 1:CAS:528:DC%2BC2MXovVGrtL4%3D
  • Shelke, G.V., Lasser, C., Gho, Y.S., Lotvall, J., Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum (2014) J Extracell Vesicles, 3. , http://sci-hub.tw/10.3402/jev.v3.24783
  • Kuhn, H.G., Dickinson-Anson, H., Gage, F.H., Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation (1996) J Neurosci, 16 (6), pp. 2027-2033. , PID: 8604047, COI: 1:CAS:528:DyaK28XhvVGnsro%3D
  • Chapleau, C.A., Larimore, J.L., Theibert, A., Pozzo-Miller, L., Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism (2009) J Neurodev Disord, 1 (3), pp. 185-196. , PID: 19966931
  • On, V., Zahedi, A., Ethell, I.M., Bhanu, B., Automated spatio-temporal analysis of dendritic spines and related protein dynamics (2017) PLoS One, 12 (8). , http://sci-hub.tw/10.1371/journal.pone.0182958, PID: 28827828, COI: 1:CAS:528:DC%2BC1cXps1GgtQ%3D%3D
  • Guillausseau, P.J., Meas, T., Virally, M., Laloi-Michelin, M., Medeau, V., Kevorkian, J.P., Abnormalities in insulin secretion in type 2 diabetes mellitus (2008) Diabetes Metab, 34, pp. S43-S48. , http://sci-hub.tw/10.1016/S1262-3636(08)73394-9, PID: 18640585, COI: 1:CAS:528:DC%2BD1cXnvVGgs70%3D
  • Boitard, C., Etchamendy, N., Sauvant, J., Aubert, A., Tronel, S., Marighetto, A., Laye, S., Ferreira, G., Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice (2012) Hippocampus, 22 (11), pp. 2095-2100. , PID: 22593080, COI: 1:CAS:528:DC%2BC38XhsFamt7vO
  • Lee, H., Lee, S., Cho, I.H., Lee, S.J., Toll-like receptors: sensor molecules for detecting damage to the nervous system (2013) Curr Protein Pept Sci, 14 (1), pp. 33-42. , PID: 23441900, COI: 1:CAS:528:DC%2BC3sXmsVGgsb4%3D
  • Sobesky, J.L., Barrientos, R.M., De May, H.S., Thompson, B.M., Weber, M.D., Watkins, L.R., Maier, S.F., High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1beta, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism (2014) Brain Behav Immun, 42, pp. 22-32. , PID: 24998196, COI: 1:CAS:528:DC%2BC2cXhtFyqtbfL
  • Guillemot-Legris, O., Muccioli, G.G., Obesity-induced neuroinflammation: beyond the hypothalamus (2017) Trends Neurosci, 40 (4), pp. 237-253. , http://sci-hub.tw/10.1016/j.tins.2017.02.005, PID: 28318543, COI: 1:CAS:528:DC%2BC2sXkt1SqsL8%3D
  • Johnson, A.R., Milner, J.J., Makowski, L., The inflammation highway: metabolism accelerates inflammatory traffic in obesity (2012) Immunol Rev, 249 (1), pp. 218-238. , http://sci-hub.tw/10.1111/j.1600-065X.2012.01151.x, PID: 22889225, COI: 1:CAS:528:DC%2BC38XhsFCnu7jJ
  • Sobue, A., Ito, N., Nagai, T., Shan, W., Hada, K., Nakajima, A., Murakami, Y., Yamada, K., Astroglial major histocompatibility complex class I following immune activation leads to behavioral and neuropathological changes (2018) Glia, 66 (5), pp. 1034-1052. , http://sci-hub.tw/10.1002/glia.23299, PID: 29380419
  • Zou, C., Shi, Y., Ohli, J., Schuller, U., Dorostkar, M.M., Herms, J., Neuroinflammation impairs adaptive structural plasticity of dendritic spines in a preclinical model of Alzheimer’s disease (2016) Acta Neuropathol, 131 (2), pp. 235-246. , http://sci-hub.tw/10.1007/s00401-015-1527-8, PID: 26724934, COI: 1:CAS:528:DC%2BC28XjvFKgsg%3D%3D
  • Kelly, K.M., Nadon, N.L., Morrison, J.H., Thibault, O., Barnes, C.A., Blalock, E.M., The neurobiology of aging (2006) Epilepsy Res, 68, pp. S5-S20. , http://sci-hub.tw/10.1016/j.eplepsyres.2005.07.015, PID: 16386406, COI: 1:CAS:528:DC%2BD28XotVCquw%3D%3D
  • Pascual-Leone, A., Freitas, C., Oberman, L., Horvath, J.C., Halko, M., Eldaief, M., Bashir, S., Rotenberg, A., Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI (2011) Brain Topogr, 24 (3-4), pp. 302-315. , http://sci-hub.tw/10.1007/s10548-011-0196-8, PID: 21842407
  • Rosenzweig, E.S., Barnes, C.A., Impact of aging on hippocampal function: plasticity, network dynamics, and cognition (2003) Prog Neurobiol, 69 (3), pp. 143-179. , PID: 12758108, COI: 1:CAS:528:DC%2BD3sXjvFWnsbk%3D
  • Saravia, F., Beauquis, J., Pietranera, L., De Nicola, A., Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice (2007) Psychoneuroendocrinology, 32, pp. 480-492. , PID: 17459595, COI: 1:CAS:528:DC%2BD2sXlsFKqu7c%3D
  • Boitard, C., Cavaroc, A., Sauvant, J., Aubert, A., Castanon, N., Laye, S., Ferreira, G., Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats (2014) Brain Behav Immun, 40, pp. 9-17. , PID: 24662056, COI: 1:CAS:528:DC%2BC2cXlvVSrt7c%3D
  • Valladolid-Acebes, I., Fole, A., Martin, M., Morales, L., Cano, M.V., Ruiz-Gayo, M., Del Olmo, N., Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? (2013) Neurobiol Learn Mem, 106, pp. 18-25. , PID: 23820496, COI: 1:CAS:528:DC%2BC2cXkvF2isg%3D%3D
  • Kohman, R.A., Rhodes, J.S., Neurogenesis, inflammation and behavior (2013) Brain Behav Immun, 27 (1), pp. 22-32. , http://sci-hub.tw/10.1016/j.bbi.2012.09.003, PID: 22985767, COI: 1:CAS:528:DC%2BC38XhsFSltb3O
  • Belarbi, K., Rosi, S., Modulation of adult-born neurons in the inflamed hippocampus (2013) Front Cell Neurosci, 7, p. 145. , http://sci-hub.tw/10.3389/fncel.2013.00145, PID: 24046730, COI: 1:CAS:528:DC%2BC2cXhslKhsr%2FN
  • Adrian, M., Kusters, R., Wierenga, C.J., Storm, C., Hoogenraad, C.C., Kapitein, L.C., Barriers in the brain: resolving dendritic spine morphology and compartmentalization (2014) Front Neuroanat, 8, p. 142. , http://sci-hub.tw/10.3389/fnana.2014.00142, PID: 25538570
  • Yuste, R., Bonhoeffer, T., Morphological changes in dendritic spines associated with long-term synaptic plasticity (2001) Annu Rev Neurosci, 24, pp. 1071-1089. , http://sci-hub.tw/10.1146/annurev.neuro.24.1.1071, PID: 11520928, COI: 1:CAS:528:DC%2BD3MXls1Shsbw%3D
  • Luengo-Sanchez, S., Fernaud-Espinosa, I., Bielza, C., Benavides-Piccione, R., Larranaga, P., DeFelipe, J., 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines (2018) PLoS Comput Biol, 14 (6). , http://sci-hub.tw/10.1371/journal.pcbi.1006221, PID: 29897896, COI: 1:CAS:528:DC%2BC1cXit1CmtrfJ
  • Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G.C., Kasai, H., The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines (2008) Neuron, 57 (5), pp. 719-729. , http://sci-hub.tw/10.1016/j.neuron.2008.01.013, PID: 18341992, COI: 1:CAS:528:DC%2BD1cXjslegtL8%3D
  • McKinney, R.A., Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling (2010) J Physiol, 588, pp. 107-116. , http://sci-hub.tw/10.1113/jphysiol.2009.178905, PID: 19933758, COI: 1:CAS:528:DC%2BC3cXntFKmtg%3D%3D
  • Holtmaat, A., Svoboda, K., Experience-dependent structural synaptic plasticity in the mammalian brain (2009) Nat Rev Neurosci, 10 (9), pp. 647-658. , http://sci-hub.tw/10.1038/nrn2699, PID: 19693029, COI: 1:CAS:528:DC%2BD1MXhtVWhsb7O
  • Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., Noguchi, J., Structural dynamics of dendritic spines in memory and cognition (2010) Trends Neurosci, 33 (3), pp. 121-129. , http://sci-hub.tw/10.1016/j.tins.2010.01.001, PID: 20138375, COI: 1:CAS:528:DC%2BC3cXjt1Kgs74%3D
  • Sarowar, T., Grabrucker, A.M., Actin-dependent alterations of dendritic spine morphology in shankopathies (2016) Neural Plast, 2016, p. 8051861. , http://sci-hub.tw/10.1155/2016/8051861, PID: 27795858, COI: 1:CAS:528:DC%2BC1cXpsFSrs7k%3D
  • Berkel, S., Tang, W., Trevino, M., Vogt, M., Obenhaus, H.A., Gass, P., Scherer, S.W., Rappold, G.A., Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology (2012) Hum Mol Genet, 21 (2), pp. 344-357. , http://sci-hub.tw/10.1093/hmg/ddr470, PID: 21994763, COI: 1:CAS:528:DC%2BC38XmtFeq
  • Mahmmoud, R.R., Sase, S., Aher, Y.D., Sase, A., Groger, M., Mokhtar, M., Hoger, H., Lubec, G., Spatial and working memory is linked to spine density and mushroom spines (2015) PLoS One, 10 (10). , http://sci-hub.tw/10.1371/journal.pone.0139739, PID: 26469788, COI: 1:CAS:528:DC%2BC2MXhvVOjtLvP
  • Freeman, L.R., Haley-Zitlin, V., Rosenberger, D.S., Granholm, A.C., Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms (2014) Nutr Neurosci, 17 (6), pp. 241-251. , PID: 24192577
  • Boitard, C., Maroun, M., Tantot, F., Cavaroc, A., Sauvant, J., Marchand, A., Laye, S., Ferreira, G., Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids (2015) J Neurosci, 35 (9), pp. 4092-4103. , PID: 25740536, COI: 1:CAS:528:DC%2BC2MXhtVGht7jP
  • Li, S., Li, H., Yang, D., Yu, X., Irwin, D.M., Niu, G., Tan, H., Excessive autophagy activation and increased apoptosis are associated with palmitic acid-induced cardiomyocyte insulin resistance (2017) J Diabetes Res, 2017, p. 2376893. , http://sci-hub.tw/10.1155/2017/2376893, PID: 29318158
  • Mayer, C.M., Belsham, D.D., Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5′ monophosphate-activated protein kinase activation (2010) Endocrinology, 151 (2), pp. 576-585. , http://sci-hub.tw/10.1210/en.2009-1122, PID: 19952270, COI: 1:CAS:528:DC%2BC3cXhsVOqtbk%3D
  • Tang, S., Wu, W., Tang, W., Ge, Z., Wang, H., Hong, T., Zhu, D., Bi, Y., Suppression of Rho-kinase 1 is responsible for insulin regulation of the AMPK/SREBP-1c pathway in skeletal muscle cells exposed to palmitate (2017) Acta Diabetol, 54 (7), pp. 635-644. , http://sci-hub.tw/10.1007/s00592-017-0976-z, PID: 28265821, COI: 1:CAS:528:DC%2BC2sXjvFWjtLg%3D
  • Gupta, N., Goel, K., Shah, P., Misra, A., Childhood obesity in developing countries: epidemiology, determinants, and prevention (2012) Endocr Rev, 33 (1), pp. 48-70. , PID: 22240243, COI: 1:CAS:528:DC%2BC38Xkt1enuro%3D
  • Karmi, A., Iozzo, P., Viljanen, A., Hirvonen, J., Fielding, B.A., Virtanen, K., Oikonen, V., Nuutila, P., Increased brain fatty acid uptake in metabolic syndrome (2010) Diabetes, 59 (9), pp. 2171-2177. , http://sci-hub.tw/10.2337/db09-0138, PID: 20566663, COI: 1:CAS:528:DC%2BC3cXht12kurbL
  • Spinelli, M., Fusco, S., Mainardi, M., Scala, F., Natale, F., Lapenta, R., Mattera, A., Grassi, C., Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a (2017) Nat Commun, 8 (1), p. 2009. , http://sci-hub.tw/10.1038/s41467-017-02221-9, PID: 29222408, COI: 1:CAS:528:DC%2BC1cXpsVWht78%3D
  • Wang, Z., Liu, D., Wang, F., Liu, S., Zhao, S., Ling, E.A., Hao, A., Saturated fatty acids activate microglia via Toll-like receptor 4/NF-kappaB signalling (2012) Br J Nutr, 107 (2), pp. 229-241. , http://sci-hub.tw/10.1017/S0007114511002868, PID: 21733316, COI: 1:CAS:528:DC%2BC38XhtV2qsL4%3D
  • Chunchai, T., Chattipakorn, N., Chattipakorn, S.C., The possible factors affecting microglial activation in cases of obesity with cognitive dysfunction (2017) Metab Brain Dis, , http://sci-hub.tw/10.1007/s11011-017-0151-9
  • Tracy, L.M., Bergqvist, F., Ivanova, E.V., Jacobsen, K.T., Iverfeldt, K., Exposure to the saturated free fatty acid palmitate alters BV-2 microglia inflammatory response (2013) J Mol Neurosci, 51 (3), pp. 805-812. , http://sci-hub.tw/10.1007/s12031-013-0068-7, PID: 23884544, COI: 1:CAS:528:DC%2BC3sXhtFKmsr7J
  • Bellot, A., Guivernau, B., Tajes, M., Bosch-Morato, M., Valls-Comamala, V., Munoz, F.J., The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines (2014) Brain Res, 1573, pp. 1-16. , http://sci-hub.tw/10.1016/j.brainres.2014.05.024, PID: 24854120, COI: 1:CAS:528:DC%2BC2cXpslajsrc%3D
  • Schratt, G., microRNAs at the synapse (2009) Nat Rev Neurosci, 10 (12), pp. 842-849. , http://sci-hub.tw/10.1038/nrn2763, PID: 19888283, COI: 1:CAS:528:DC%2BD1MXhtlGhsbzO
  • Prada, I., Gabrielli, M., Turola, E., Iorio, A., D’Arrigo, G., Parolisi, R., De Luca, M., Verderio, C., Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations (2018) Acta Neuropathol, 135 (4), pp. 529-550. , http://sci-hub.tw/10.1007/s00401-017-1803-x, PID: 29302779, COI: 1:CAS:528:DC%2BC1cXjvFehsA%3D%3D
  • de Sena Cortabitarte, A., Berkel, S., Cristian, F.B., Fischer, C., Rappold, G.A., A direct regulatory link between microRNA-137 and SHANK2: implications for neuropsychiatric disorders (2018) J Neurodev Disord, 10 (1), p. 15. , http://sci-hub.tw/10.1186/s11689-018-9233-1, PID: 29665782
  • Takeuchi, H., Jin, S., Wang, J., Zhang, G., Kawanokuchi, J., Kuno, R., Sonobe, Y., Suzumura, A., Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner (2006) J Biol Chem, 281 (30), pp. 21362-21368. , http://sci-hub.tw/10.1074/jbc.M600504200, PID: 16720574, COI: 1:CAS:528:DC%2BD28Xnt1Kjs7s%3D
  • Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Rapoport, J.L., Brain development during childhood and adolescence: a longitudinal MRI study (1999) Nat Neurosci, 2 (10), pp. 861-863. , http://sci-hub.tw/10.1038/13158, PID: 10491603, COI: 1:CAS:528:DyaK1MXmsVOqu7s%3D

Citas:

---------- APA ----------
Vinuesa, A., Bentivegna, M., Calfa, G., Filipello, F., Pomilio, C., Bonaventura, M.M., Lux-Lantos, V.,..., Saravia, F. (2018) . Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles. Molecular Neurobiology.
http://dx.doi.org/10.1007/s12035-018-1435-8
---------- CHICAGO ----------
Vinuesa, A., Bentivegna, M., Calfa, G., Filipello, F., Pomilio, C., Bonaventura, M.M., et al. "Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles" . Molecular Neurobiology (2018).
http://dx.doi.org/10.1007/s12035-018-1435-8
---------- MLA ----------
Vinuesa, A., Bentivegna, M., Calfa, G., Filipello, F., Pomilio, C., Bonaventura, M.M., et al. "Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles" . Molecular Neurobiology, 2018.
http://dx.doi.org/10.1007/s12035-018-1435-8
---------- VANCOUVER ----------
Vinuesa, A., Bentivegna, M., Calfa, G., Filipello, F., Pomilio, C., Bonaventura, M.M., et al. Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles. Mol. Neurobiol. 2018.
http://dx.doi.org/10.1007/s12035-018-1435-8