Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aggregation of proteins into amyloid fibrils is related to more than 30 diseases, including the most common neurodegenerative conditions. Amyloid fibrillation is a nucleation-dependent polymerization reaction where monomeric protein first assembles into oligomers that in turn serve as nuclei for fibril formation. Recently, nanoparticles of various compositions and sizes have been investigated as nucleation centers for amyloid fibrillation. The interaction of nanoparticles with amyloid proteins can generate intermediate structures able to accelerate or inhibit fibrillation, and therefore, they constitute a tool to control and manipulate amyloid fibrillation which may be the key to elucidate molecular mechanisms or to devise therapies. In this chapter, we first give a general overview about the use of nanoparticles as artificial nucleation centers for amyloid aggregation, and then we focus on gold nanoparticles providing detailed protocols for their functionalization and use in amyloid fibrillation assays. 1.Amyloid fibrillation as a nucleation and growth polymerization.2.Nanoparticles as nucleation centers.3.Unique properties of gold nanoparticles.4.Fabrication and surface modification of gold nanoparticles.5.Amyloid aggregation assays with gold nanoparticles.6.Protocols. © 2018, Springer Science+Business Media LLC.

Registro:

Documento: Artículo
Título:Gold nanoparticles as nucleation centers for amyloid fibrillation
Autor:Álvarez, Y.D.; Pellegrotti, J.V.; Stefani, F.D.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad de Buenos Aires, C1428EAH, Argentina
Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad de Buenos Aires, C1425FQD, Argentina
Palabras clave:Amyloid aggregation; Nucleation and growth; Plasmonic nanoparticles; Protein self-assembly; Surface functionalization; alpha synuclein; amylin; amyloid beta protein; beta 2 microglobulin; cystamine; gold nanoparticle; human serum albumin; insulin; monellin; thiol derivative; adsorption; amyloid fibrillation; amyloidosis; chemical labeling; concentration (parameters); conjugation; controlled study; fluorescence; particle size; polymerization; prion; priority journal; quantitative analysis; surface property
Año:2018
Volumen:135
Página de inicio:269
Página de fin:291
DOI: http://dx.doi.org/10.1007/978-1-4939-7584-6_16
Título revista:Neuromethods
Título revista abreviado:Neuromethods
ISSN:08932336
CAS:alpha synuclein, 154040-18-3; amylin, 106602-62-4; amyloid beta protein, 109770-29-8; beta 2 microglobulin, 9066-69-7; cystamine, 51-85-4, 56-17-7; human serum albumin, 9048-49-1; insulin, 9004-10-8; thiol derivative, 13940-21-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08932336_v135_n_p269_Alvarez

Referencias:

  • Knowles, T.P.J., Buehler, M.J., Nanomechanics of functional and pathological amyloid materials (2011) Nat Nanotechnol, 6, pp. 469-479
  • Arosio, P., Knowles, T.P.J., Linse, S., On the lag phase in amyloid fibril formation (2015) Phys Chem Chem Phys, 17, pp. 7606-7618
  • Lansbury, P.T., Lashuel, H.A., A century-old debate on protein aggregation and neuro-degeneration enters the clinic (2006) Nature, 443, pp. 774-779
  • Chiti, F., Dobson, C.M., Protein misfold-ing, functional amyloid, and human disease (2006) Annu Rev Biochem, 75, pp. 333-366
  • Winner, B., In vivo demonstration that alpha-synuclein oligomers are toxic (2011) Proc Natl Acad Sci, 108, pp. 4194-4199
  • Lashuel, H.A., Overk, C.R., Oueslati, A., Masliah, E., The many faces of α-synuclein: From structure and toxicity to therapeutic target (2013) Nat Rev Neurosci, 14, pp. 38-48
  • Otzen, D.E., (2013) Amyloid Fibrils and Prefibrillar Aggregates: Molecular and Biological Properties. Wiley-Vch Verlag Gmbh & Co. Kgaa, , Weinheim, Germany
  • Morris, A.M., Watzky, M.A., Finke, R.G., Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature (2009) Biochim Biophys Acta, 1794, pp. 375-397
  • Morris, A.M., Finke, R.G., Alpha-synuclein aggregation variable temperature and variable pH kinetic data: A re-analysis using the Finke-Watzky 2-step model of nucleation and auto-catalytic growth (2009) Biophys Chem, 140, pp. 9-15
  • Buell, A.K., Dobson, C.M., Knowles, T.P.J., The physical chemistry of the amyloid phenomenon: Thermodynamics and kinetics of filamentous protein aggregation (2014) Essays Biochem, 56, pp. 11-39
  • Pellarin, R., Caflisch, A., Interpreting the aggregation kinetics of amyloid peptides (2006) J Mol Biol, 360, pp. 882-892
  • Uversky, V.N., Fink, A.L., Conformational constraints for amyloid fibrillation: The importance of being unfolded (2004) Biochim Biophys Acta, 1698, pp. 131-153
  • Pimplikar, S.W., Reassessing the amyloid cascade hypothesis of Alzheimer’s disease (2009) Int J Biochem Cell Biol, 41, pp. 1261-1268
  • Liu, Y., Carver, J.A., Calabrese, A.N., Pukala, T.L., Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation (2014) Biochim Biophys Acta Proteins Proteomics, 1844, pp. 1481-1485
  • Lorenzen, N., How epigallocatechin gallate can inhibit α-synuclein oligomer toxicity in vitro (2014) J Biol Chem, 289, pp. 21299-21310
  • Ardah, M.T., Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity (2014) Front Aging Neurosci, 6, pp. 1-17
  • Mason, J.M., Kokkoni, N., Stott, K., Doig, A.J., Design strategies for anti-amyloid agents (2003) Curr Opin Struct Biol, 13, pp. 526-532
  • Alvarez, Y.D., Influence of gold nanoparticles on the kinetics of α-synuclein aggregation (2013) Nano Lett, 13, pp. 6156-6163
  • Cabaleiro-Lago, C., Szczepankiewicz, O., Linse, S., The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate (2012) Langmuir, 28, pp. 1852-1857
  • Mirsadeghi, S., Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process (2015) Nanoscale, 7, pp. 5004-5013
  • Mahmoudi, M., The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation (2013) Chembiochem, 14, pp. 568-572
  • Goy-López, S., Physicochemical characteristics of protein-NP bioconjugates: The role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition (2012) Langmuir, 28, pp. 9113-9126
  • Roberti, M.J., Morgan, M., Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells (2009) J am Chem Soc, 131, pp. 8102-8107
  • Galvagnion, C., Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation (2015) Nat Chem Biol, 11, pp. 229-234
  • Mohammad-Beigi, H., Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics (2015) Nanoscale, 7, pp. 19627-19640
  • Joshi, N., Attenuation of the early events of α-synuclein aggregation: A fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanoparticles (2015) Langmuir, 31, pp. 1469-1478
  • Hsieh, S., Chang, C., Chou, H., Gold nanoparticles as amyloid-like fibrillogenesis inhibitors (2013) Colloids Surf B Biointerfaces, 112, pp. 525-529
  • Dubey, K., Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin (2015) Amino Acids, 47, pp. 2551-2560
  • Ai Tran, H.N., A novel class of potential prion drugs: Preliminary in vitro and in vivo data for multilayer coated gold nanoparticles (2010) Nanoscale, 2 (2), pp. 2724-3273
  • Linse, S., Nucleation of protein fibrillation by nanoparticles (2007) Proc Natl Acad Sci, 104, pp. 8691-8696
  • Cabaleiro-Lago, C., Lynch, I., Dawson, K.A., Linse, S., Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles (2010) Langmuir, 26, pp. 3453-3461
  • Cabaleiro-Lago, C., Quinlan-Pluck, F., Lynch, I., Dawson, K.A., Linse, S., Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation (2010) ACS Chem Nerosci, 1, pp. 279-287
  • Cabaleiro-Lago, C., Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles (2008) J am Chem Soc, 130, pp. 15437-15443
  • Gao, N., Sun, H., Dong, K., Ren, J., Qu, X., Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease (2015) Chem a Eur J, 21, pp. 829-835
  • Liao, Y.-H., Chang, Y.-J., Yoshiike, Y., Chang, Y.-C., Chen, Y.-R., Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity (2012) Small, 8, pp. 3631-3639
  • Pai, A.S., Rubinstein, I., Önyüksel, H., PEGylated phospholipid nanomicelles interact with β-amyloid(1-42) and mitigate its β-sheet formation, aggregation and neurotoxicity in vitro (2006) Peptides, 27, pp. 2858-2866
  • Yoo, S., Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins (2011) Angew Chem Int Ed, 50, pp. 5110-5115
  • Wu, W., TiO2 nanoparticles promote β-amyloid fibrillation in vitro (2008) Biochem Biophys Res Commun, 373, pp. 315-318
  • Xiao, L., Zhao, D., Chan, W.H., Choi, M.M.F., Li, H.W., Inhibition of beta 1-40 amyloid fibrillation with N-acetyl-l-cysteine capped quantum dots (2010) Biomaterials, 31, pp. 91-98
  • Ikeda, K., Okada, T., Sawada, S.I., Akiyoshi, K., Matsuzaki, K., Inhibition of the formation of amyloid β-protein fibrils using biocompatible nanogels as artificial chaperones (2006) FEBS Lett, 580, pp. 6587-6595
  • Mirsadeghi, S., Shanehsazzadeh, S., Atyabi, F., Dinarvand, R., Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process (2016) Mater Sci Eng C, 59, pp. 390-397
  • Coronado, E.A., Encina, E.R., Stefani, F.D., Optical properties of metallic nanoparticles: Manipulating light, heat and forces at the nanoscale (2011) Nanoscale, 3, pp. 4042-4059
  • Chithrani, B.D., Ghazani, A.A., Chan, W.C.W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells (2006) Nano Lett, 6, pp. 662-668
  • Shukla, R., Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview (2005) Langmuir, 21, pp. 10644-10654
  • Sperling, R.A., Rivera Gil, P., Zhang, F., Zanella, M., Parak, W.J., Biological applications of gold nanoparticles (2008) Chem Soc Rev, 37, pp. 1896-1908
  • Murphy, C.J., Gold nanoparticles in biology: Beyond toxicity to cellular imaging (2008) Acc Chem Res, 41, pp. 1721-1730
  • Khlebtsov, N., Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies (2011) Chem Soc Rev, 40, pp. 1647-1671
  • Pham, T., Jackson, J.B., Halas, N.J., Lee, T.R., Preparation and characterization of gold nanoshells coated with self-assembled mono-layers (2002) Langmuir, 18, pp. 4915-4920
  • Oldenburg, S., Averitt, R., Westcott, S., Halas, N., Nanoengineering of optical resonances (1998) Chem Phys Lett, 288, pp. 243-247
  • Lal, S., Tailoring plasmonic substrates for surface enhanced spectroscopies (2008) Chem Soc Rev, 37, p. 898
  • Myroshnychenko, V., Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method (2008) Adv Mater, 20, pp. 4288-4293
  • Huang, X., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A., Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy (2007) Nanomedicine, 2, pp. 681-693
  • Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems (2007) Plasmonics, 2, pp. 107-118
  • Joh, D.Y., Selective targeting of brain tumors with gold nanoparticle-induced radio-sensitization (2013) Plos One, 8
  • Sonavane, G., Tomoda, K., Makino, K., Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size (2008) Colloids Surf B, 66, pp. 274-280
  • Prades, R., Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor (2012) Biomaterials, 33, pp. 7194-7205
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters, 25. , Springer, Berlin
  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment (2003) J Phys Chem B, 107, pp. 668-677
  • Pellegrotti, J.V., Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids (2014) Nano Lett, 14, pp. 2831-2836
  • Gobin, A.M., Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy (2007) Nano Lett, 7, pp. 1929-1934
  • Wu, X., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots (2003) Nat Biotechnol, 21, pp. 41-46
  • Pissuwan, D., Niidome, T., Cortie, M.B., The forthcoming applications of gold nanoparticles in drug and gene delivery systems (2011) J Control Release, 149, pp. 65-71
  • Rotello, V.M., Drug and gene delivery using gold nanoparticles (2007) Drug Deliv, pp. 40-45
  • Paasonen, L., Gold nanoparticles enable selective light-induced contents release from liposomes (2007) J Control Release, 122, pp. 86-93
  • Patil, S.D., Rhodes, D.G., Burgess, D.J., DNA-based therapeutics and DNA delivery systems: A comprehensive review (2005) AAPS J, 7, pp. E61-E77
  • Han, G., Martin, C.T., Rotello, V.M., Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents (2006) Chem Biol Drug Des, 67, pp. 78-82
  • Mayilo, S., Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T (2009) Nano Lett, 9, pp. 4558-4563
  • Chandrasekharan, N., Kelly, L.A., A dual fluorescence temperature sensor based on per-ylene/exciplex interconversion (2001) J am Chem Soc, 123, pp. 9898-9899
  • Nath, N., Chilkoti, A., A colorimetric gold nanoparticle sensor to interrogate biomolecu-lar interactions in real time on a surface (2002) Anal Chem, 74, pp. 504-509
  • Zijlstra, P., Paulo, P.M.R., Orrit, M., Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod (2012) Nat Nanotechnol, 7, pp. 379-382
  • Mayer, K.M., Hafner, J.H., Localized surface plasmon resonance sensors (2011) Chem Rev, 111, pp. 3828-3857
  • Lakhani, P.M., Rompicharla, S.V.K., Ghosh, B., Biswas, S., An overview of synthetic strategies and current applications of gold nanorods in cancer treatment (2015) Nanotechnology, 26
  • Atwater, H.A., American, S., The promise of plasmonics (2007) Sci Am, 296, pp. 56-63
  • Taminiau, T.H., Stefani, F.D., Van Hulst, N.F., Optical nanorod antennas modeled as cavities for dipolar emitters: Evolution of sub-and super-radiant modes (2011) Nano Lett, 11, pp. 1020-1024
  • Taminiau, T.H., Stefani, F.D., Van Hulst, N.F., Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna (2008) Opt Express, 16
  • Busson, M.P., Rolly, B., Stout, B., Bonod, N., Bidault, S., Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA (2012) Nat Commun, 3, p. 962
  • Acuna, G.P., Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas (2012) Science, 338, pp. 506-510
  • Ye, X., Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives (2012) ACS Nano, 6, pp. 2804-2817
  • Kimling, J., Turkevich method for gold nanoparticle synthesis revisited (2006) J Phys Chem B, 110, pp. 15700-15707
  • Martin, M.N., Basham, J.I., Chando, P., Eah, S.-K., Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly (2010) Langmuir, 26, pp. 7410-7417
  • Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen (1908) Ann Phys, 25, pp. 377-445
  • Hohenester, U., Trügler, A., MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles (2012) Comput Phys Commun, 183, pp. 370-381
  • Klar, T., Surface-plasmon resonances in single metallic nanoparticles (1998) Phys Rev Lett, 80, pp. 4249-4252
  • Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles (2002) J Chem Phys, 116, p. 6755
  • Hermanson, G.T., (2008) Bioconjugate Techniques, , Elsevier, Amsterdam
  • Yushchenko, D.A., Fauerbach, J.A., Thirunavukkuarasu, S., Jares-Erijman, E.A., Jovin, T.M., Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation (2010) J am Chem Soc, 132, pp. 7860-7861
  • Giehm, L., Otzen, D.E., Strategies to increase the reproducibility of protein fibrillization in plate reader assays (2010) Anal Biochem, 400, pp. 270-281
  • Giehm, L., Lorenzen, N., Otzen, D.E., Assays for α-synuclein aggregation (2011) Methods, 53, pp. 295-305
  • Levine, H.I., Quantification of beta-sheet amyloid fibril structures with thioflavin T (1999) Methods Enzymol, 309, pp. 274-284
  • Hung, S.C., Ju, J., Mathies, R.A., Glazer, A.N., Energy transfer primers with 5- or 6-carboxyrhodamine-6G as acceptor chromo-phores (1996) Anal Biochem, 238, pp. 165-170
  • Metzker, M.L., Lu, J., Gibbs, R.A., Electrophoretically uniform fluorescent dyes for automated DNA sequencing (1996) Science, 271, pp. 1420-1422
  • Koike, H., Yusa, T., McCormick, D.B., Wright, L.D., (1970) Vitamins and Coenzymes. Methods Enzymology, 18. , Elsevier, Amsterdam
  • Davis, W.C., (1995) Monoclonal Antibody Protocols, 45. , Humana Press, Totowa, NJ
  • Huang, B., Wang, W., Bates, M., Zhuang, X., Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy (2008) Science, 319, pp. 810-813

Citas:

---------- APA ----------
Álvarez, Y.D., Pellegrotti, J.V. & Stefani, F.D. (2018) . Gold nanoparticles as nucleation centers for amyloid fibrillation. Neuromethods, 135, 269-291.
http://dx.doi.org/10.1007/978-1-4939-7584-6_16
---------- CHICAGO ----------
Álvarez, Y.D., Pellegrotti, J.V., Stefani, F.D. "Gold nanoparticles as nucleation centers for amyloid fibrillation" . Neuromethods 135 (2018) : 269-291.
http://dx.doi.org/10.1007/978-1-4939-7584-6_16
---------- MLA ----------
Álvarez, Y.D., Pellegrotti, J.V., Stefani, F.D. "Gold nanoparticles as nucleation centers for amyloid fibrillation" . Neuromethods, vol. 135, 2018, pp. 269-291.
http://dx.doi.org/10.1007/978-1-4939-7584-6_16
---------- VANCOUVER ----------
Álvarez, Y.D., Pellegrotti, J.V., Stefani, F.D. Gold nanoparticles as nucleation centers for amyloid fibrillation. Neuromethods. 2018;135:269-291.
http://dx.doi.org/10.1007/978-1-4939-7584-6_16