Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Composite materials are produced using thermoplastic starch reinforced with cellulose microfibrils. The cellulose microfibrils are isolated from two different sources and their reinforcement capacity was evaluated. Vegetable cellulose (VC) microfibrils are isolated from vascular bundles of banana rachis, while bacterial cellulose (BC) microfibrils are produced by Gluconacetobacter genus bacteria using pineapple peel juice as the culture media. For this study, both the materials were obtained from Colombian agroindustrial wastes. Composite films were characterized using different techniques, including mechanical tensile testing, attenuated total reflection Fourier transform infrared spectroscopy, and thermogravimetric analysis. The purpose of this study is to assess the effect of different processing methods and cellulose microfibrils content in the composite material behavior. The results showed that the mechanical properties were increased when cellulose microfibrils were added before gelatinization. Significant increments in Young's modulus and tensile strength of both VC and BC composites were obtained with respect to starch matrix. © 2012 The Author(s).

Registro:

Documento: Artículo
Título:Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes
Autor:Montoya, U.; Zuluaga, R.; Castro, C.; Goyanes, S.; Gañán, P.
Filiación:Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1 N 70-01, Medellín, 56006, Colombia
Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Medellín, Colombia
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Medellín, Colombia
Palabras clave:Agroindustrial waste; bacterial cellulose microfibrils; composite films; potato starch; vegetable cellulose microfibrils
Año:2014
Volumen:27
Número:3
Página de inicio:413
Página de fin:426
DOI: http://dx.doi.org/10.1177/0892705712461663
Título revista:Journal of Thermoplastic Composite Materials
Título revista abreviado:J Thermoplast Compos Mater
ISSN:08927057
CODEN:JTMAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08927057_v27_n3_p413_Montoya

Referencias:

  • Gaspar, M., Benko, Z., Dogossy, G., Reczey, K., Czigany, T., Reducing water absorption in compostable starch-based plastics (2005) Polymer Degradation and Stability, 90 (3), pp. 563-569. , DOI 10.1016/j.polymdegradstab.2005.03.012, PII S0141391005001631
  • Img, M., Magina, S.P., Oliveira, L., New biocomposites based on thermoplastic starch and bacterial cellulose (2009) Compos Sci Technol, 69, pp. 2163-2168
  • Kim, S.W., Lee, S.H., Kang, J.S., Kang, K.H., Thermal conductivity of thermoplastics reinforced with natural fibers (2006) International Journal of Thermophysics, 27 (6), pp. 1873-1881. , DOI 10.1007/s10765-006-0128-0, Proceedings of the 17th European Conference on Thermophysical Properties
  • Avérous, L., Biodegradable multiphase systems based on plasticized starch (2004) J Macromol Sci, 44, pp. 231-274
  • Lourdin, D., Valle, G.D., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydr Polym, 27, pp. 261-270
  • Chivrac, F., Pollet, E., Schmutz, M., Averous, L., New approach to elaborate exfoliated starch-based nanobiocomposites (2008) Biomacromolecules, 9 (3), pp. 896-900. , DOI 10.1021/bm7012668
  • Fishman, M.L., Coffin, D.R., Konstance, R.P., Onwulata, C.I., Extrusion of pectin/starch blends plasticized with glycerol (2000) Carbohydrate Polymers, 41 (4), pp. 317-325. , DOI 10.1016/S0144-8617(99)00117-4
  • Martin, O., Schwach, E., Averous, L., Couturier, Y., Properties of biodegradable multilayer films based on plasticized wheat starch (2001) Starch/Staerke, 53 (8), pp. 372-380. , DOI 10.1002/1521-379X(200108)53: 8<372::AID-STAR372>3.0.CO;2-F
  • Wang Shogren L, R.L., Carriere, C., Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion (2001) Polym Eng Sci, 105, pp. 5630-5636
  • Barret, A., Kaletunc, G., Rosenburg, S., Effect of sucrose on the structure, mechanical strength and thermal properties of corn extrudates (1995) Carbohydr Polym, 26, pp. 261-269
  • Jansson, A., Jarnstrom, L., Barrier and mechanical properties of modified starches (2005) Cellulose, 12 (4), pp. 423-433. , DOI 10.1007/s10570-004-6092-6
  • Teixeira, M.E., Pasquini, D., Aas, C., Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch (2009) Carbohydr Polym, 78, pp. 422-431
  • Martin, O., Averous, L., Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems (2001) Polymer, 42 (14), pp. 6209-6219. , DOI 10.1016/S0032-3861(01)00086-6, PII S0032386101000866
  • Aas, C., Ajf, C., Angnelli, J.A.M., Thermoplastic starch-cellulosic fibrers composites: Preliminary results (2001) Carbohydr Polym, 45, pp. 183-188
  • Averous, L., Fringant, C., Moro, L., Plasticized starch-cellulose interactions in polysaccharide composites (2001) Polymer, 42 (15), pp. 6565-6572. , DOI 10.1016/S0032-3861(01)00125-2, PII S0032386101001252
  • Bledzki, A.K., Gassan, J., Composites reinforced with cellulose based fibers (1999) Prog Polym Sci, 24, pp. 221-274
  • Takagi, H., Asano, A., Effects of processing conditions on flexural properties of cellulose nanofiber reinforced "green" composites (2008) Composites Part A: Applied Science and Manufacturing, 39 (4), pp. 685-689. , DOI 10.1016/j.compositesa.2007.08.019, PII S1359835X07001686
  • Ollett, A.L., Westhoff, R.P., Smith, A.C., Deformation and fracture behavior of wheat starch plasticized with glucose and water (1991) J Mater Sci, 26, pp. 1351-1356
  • Wu, R.L., Wang, X.L., Li, F., Green composites films prepared from cellulose, starch and lignin in room-temperature ionic liquid (2009) Bioresour Technol, 100, pp. 2569-2574
  • Ma, X., Chang, P.R., Yu, J., Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites (2008) Carbohydrate Polymers, 72 (3), pp. 369-375. , DOI 10.1016/j.carbpol.2007.09.002, PII S0144861707004444
  • Dufresne, A., Dupeyre, D., Vignon, M.R., Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites (2000) J Appl Polymer Sci, 76, pp. 2080-2092
  • Aggarwal, P., Dollimore, D., Heon, K., Comparative thermal analysis study of two biopolymers, starch and cellulose (1997) Journal of Thermal Analysis, 50 (1-2), pp. 7-17
  • Luo, D., Wang, W.-X., Takao, Y., Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites (2007) Composites Science and Technology, 67 (14), pp. 2947-2958. , DOI 10.1016/j.compscitech.2007.05.005, PII S0266353807001935, Polymer Nanocomposites - Modeling, Mechanical and Functional Properties Polymer Nanocomposites
  • Faria, N., Cordeiro, M., Belgacem, N., Dwarf Cavendish as a source of natural fibers in poly(propylene)-based composites (2006) Macromol Mater Eng, 291, pp. 16-26
  • Zuluaga, R., Putaux, J.-L., Restrepo, A., Mondragon, I., Ganan, P., Cellulose microfibrils from banana farming residues: Isolation and characterization (2007) Cellulose, 14 (6), pp. 585-592. , DOI 10.1007/s10570-007-9118-z, Nanotechnology: A Fiber Perspective
  • Castro, C., Zuluaga, R., Putaux, J.L., Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes (2011) Carbohydr Polym, 84, pp. 96-102
  • Wan, Y.Z., Honglin, L., He, F., Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites (2009) Comp Sci Technol, 69, pp. 1212-1217
  • Zuluaga, R., Putaux, J.L., Cruz, J., Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features (2009) Carbohydr Polym, 76, pp. 51-59
  • Flores, S., Fama, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate (2007) Food Research International, 40 (2), pp. 257-265. , DOI 10.1016/j.foodres.2006.02.004, PII S0963996906000378
  • Ma, W., Canestraro, C.D., Mikowski, A., Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: Effect of enzymatic treatment on mechanical properties (2010) Carbohydr Polym, 80, pp. 866-873
  • Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K., Optically transparent composites reinforced with networks of bacterial nanofibers (2005) Advanced Materials, 17 (2), pp. 153-155. , DOI 10.1002/adma.200400597
  • Nakagaito, A.N., Iwamoto, S., Yano, H., Bacterial cellulose: The ultimate nano-scalar cellulose morphology for the production of high-strength composites (2005) Appl Phys A: Mater Sci Process, 80, pp. 93-97
  • Angellier, H., Molina-Boisseau, S., Dole, P., Thermoplastic starch-waxy maize starch nanocrystals nanocomposites (2006) Biomacromolecules, 7, pp. 531-539
  • Massey, L.K., (2004) Film Properties of Plastics and Elastomers, pp. 95-98. , 2nd ed. New York, NY: Plastic Design Library
  • Tashiro Kohji, Kobayashi Masamichi, Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses. Role of hydrogen bonds (1991) Polymer, 32 (8), pp. 1516-1526. , DOI 10.1016/0032-3861(91)90435-L
  • Marechal, Y., Chanzy, H., The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry (2000) Journal of Molecular Structure, 523 (1-3), pp. 183-196. , DOI 10.1016/S0022-2860(99)00389-0, PII S0022286099003890
  • Schwanninger, M., Rodrigues, J.C., Pereira, H., Effect of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose (2004) Vib Spectros, 36, pp. 23-40
  • Grande, C.J., Torres, F.G., Gomez, C.M., Development of self-assembled bacterial cellulose-starch nanocomposites (2009) Mater Sci Eng C, 29, pp. 1098-1104
  • Peter, R.C., Ruijuan, J., Pengwu, Z., Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites (2010) Carbohydr Polym, 79, pp. 301-305
  • Fang, J.M., Fowler, P.A., Tomkinson, J., Hill, C.A.S., The preparation and characterisation of a series of chemically modified potato starches (2002) Carbohydrate Polymers, 47 (3), pp. 245-252. , DOI 10.1016/S0144-8617(01)00187-4, PII S0144861701001874
  • Jiugao, Y., Ning, W., Xiaofei, M., The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol (2005) Starch/Staerke, 57 (10), pp. 494-504. , DOI 10.1002/star.200500423
  • Ying, W., Fengying, G., Peter, C., Effect of agar on the microstructure and performance of potato starch film (2009) Carbohydr Polym, 76, pp. 299-304
  • Van Soest, J.J.G., Tournois, H., De Wit, D., Vliegenthart, J.F.G., Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy (1995) Carbohydrate Research, 279, pp. 201-214. , DOI 10.1016/0008-6215(95)00270-7
  • Rindlav, A., Hulleman, S.H.D., Gatenholm, P., Formation of starch films with varying crystallinity (1997) Carbohydrate Polymers, 34 (1-2), pp. 25-30. , PII S0144861797000933
  • Sun, J.X., Sun, X.F., Zhao, H., Isolation and characterization of cellulose from sugarcane bagasse (2004) Polym Degrad Stab, 84, pp. 331-339

Citas:

---------- APA ----------
Montoya, U., Zuluaga, R., Castro, C., Goyanes, S. & Gañán, P. (2014) . Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes. Journal of Thermoplastic Composite Materials, 27(3), 413-426.
http://dx.doi.org/10.1177/0892705712461663
---------- CHICAGO ----------
Montoya, U., Zuluaga, R., Castro, C., Goyanes, S., Gañán, P. "Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes" . Journal of Thermoplastic Composite Materials 27, no. 3 (2014) : 413-426.
http://dx.doi.org/10.1177/0892705712461663
---------- MLA ----------
Montoya, U., Zuluaga, R., Castro, C., Goyanes, S., Gañán, P. "Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes" . Journal of Thermoplastic Composite Materials, vol. 27, no. 3, 2014, pp. 413-426.
http://dx.doi.org/10.1177/0892705712461663
---------- VANCOUVER ----------
Montoya, U., Zuluaga, R., Castro, C., Goyanes, S., Gañán, P. Development of composite films based on thermoplastic starch and cellulose microfibrils from Colombian agroindustrial wastes. J Thermoplast Compos Mater. 2014;27(3):413-426.
http://dx.doi.org/10.1177/0892705712461663