Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Relaxed MM3 , potential energy surfaces (conformational maps) were calculated for analogues of ,-trehalose, ,-trehalose, ,-trehalose, maltose, cellobiose and galabiose based on 2-methyltetrahydropyran. Starting structures included not only 4C1 (sugar nomenclature) geometries, but also combinations with 1C4 conformers, and some flexible (boat or skew) forms. These forms were included as part of continuing efforts to eliminate unwarranted assumptions in modelling studies, as well as to account for new experimental findings. Four to nine maps were obtained for each analogue, and from them adiabatic maps were produced. Although the minimum energy regions always resulted from 4C1-4C1 geometries, moderate to large parts of most maps had lower energies when one or both rings were in the 1C4 conformation. Only the adiabatic surface for the (diequatorial) analogue of ,-trehalose was covered entirely by 4C1-4C1 conformers. For the cellobiose and ,-trehalose analogues, these conformers covered 74 and 67% of the surfaces, respectively. The remainder of the cellobiose analogue surface was covered by conformers having a 1C4 conformation at the reducing end, and for the ,-trehalose analogue, by conformers having 1C4 shapes for the -linked unit. Adiabatic surfaces of the other three analogues were based on all combinations of 4C1 and 1C4 conformers. The normal 4C1-4C1 combination only covered 37-41% of those surfaces, whereas each of the other three conformations accounted for 10-31%. Although the normal conformation accounted for 97.0-99.8% of the total population, adiabaticity in disaccharide maps is not guaranteed unless variable ring shapes (another manifestation of the multiple minima problem) are considered.

Registro:

Documento: Artículo
Título:Disaccharide conformational maps: Adiabaticity in analogues with variable ring shapes
Autor:Stortz, C.A.; French, A.D.
Filiación:Departamento de Quimica Organica-CIHIDECAR, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Southern Regional Research Center, US Department of Agriculture, New Orleans, LA, United States
Palabras clave:Carbohydrate; Cellobiose; Galabiose; Maltose; Tetrahydropyran; Trehalose; Conformations; Optical projectors; Polysaccharides; Potential energy; Potential energy surfaces; Quantum chemistry; Sugar (sucrose); Sugars; Adiabaticity; Carbohydrate; Cellobiose; Galabiose; Large parts; Lower energies; Maltose; Minima problem; Minimum energy; Modelling studies; Reducing end; Tetrahydropyran; Trehalose; Maps
Año:2008
Volumen:34
Número:4
Página de inicio:373
Página de fin:389
DOI: http://dx.doi.org/10.1080/08927020701663339
Título revista:Molecular Simulation
Título revista abreviado:Mol Simul
ISSN:08927022
CODEN:MOSIE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08927022_v34_n4_p373_Stortz

Referencias:

  • Pérez, S., Theoretical aspects of oligosaccharide conformation (1993) Curr. Opin. Struct. Biol, 3, p. 675
  • French, A.D., Brady, J.W., Computer modeling of carbohydrates (1990) ACS Symp. Ser, 430, p. 1
  • Tran, V., Bulèon, A., Imberty, A., Pérez, S., Relaxed potential energy surfaces of maltose (1989) Biopolymers, 28, p. 679
  • French, A.D., Dowd, M.K., Exploration of disaccharide conformations by molecular mechanics (1993) J. Mol. Struct. (Theochem.), 286, p. 183
  • Stortz, C.A., Disaccharide conformational maps: How adiabatic is an adiabatic map? (1999) Carbohydr. Res, 322, p. 77
  • French, A.D., Kelterer, A.-M., Johnson, G.P., Dowd, M.K., Cramer, C.J., Constructing and evaluating energy surfaces of crystalline disaccharides (2000) J. Mol. Graph. Model, 18, p. 95
  • Melberg, S., Rasmussen, K., Conformations of disaccharides by empirical force-field calculations. Part I, β-maltose (1979) Carbohydr. Res, 69, p. 27
  • Melberg, S., Rasmussen, K., Conformations of disaccharides by empirical force-field calculations. Part II, β-cellobiose (1979) Carbohydr. Res, 71, p. 25
  • Melberg, S., Rasmussen, K., Conformations of disaccharides by empirical force-field calculations. Part III, β-gentiobiose (1980) Carbohydr. Res, 78, p. 215
  • Tvaroška, I., Pérez, S., Conformational energy calculations for oligosaccharides: A comparison of methods and a strategy of calculation (1986) Carbohydr. Res, 149, p. 389
  • French, A.D., Rigid- and relaxed-residue conformational analyses of cellobiose using the computer program MM2 (1988) Biopolymers, 27, p. 1519
  • Ha, S.N., Madsen, L.J., Brady, J.W., Conformational analysis and molecular dynamics simulations of maltose (1988) Biopolymers, 27, p. 1927
  • French, A.D., Comparison of rigid and relaxed conformational maps for cellobiose and maltose (1989) Carbohydr. Res, 188, p. 206
  • Imberty, A., Tran, V., Pérez, S., Relaxed potential energy surfaces of n-linked oligosaccharides: The mannose-α-(1 → 3)-mannose case (1989) J. Comput. Chem, 11, p. 205
  • French, A.D., Johnson, G.P., Roles of starting geometries in quantum mechanics studies of cellobiose (2008) Mol. Simul, 34, p. 365
  • Tvaroška, I., Váklavík, L., Stereochemistry of nonreducing disaccharides in solution (1987) Carbohydr. Res, 160, p. 137
  • Zhang, P., Klymachyov, A.N., Brown, S., Ellington, J.G., Grandinetti, P.J., Solid-state 13C NMR investigations of the glycosidic linkage of α-α′trehalose (1998) Solid State Nucl. Magn. Reson, 12, p. 221
  • French, A.D., Kelterer, A.-M., Johnson, G.P., Dowd, M.K., Cramer, C.J., HF/6-31G* Energy surfaces for disaccharide analogs (2001) J. Comput. Chem, 22, p. 65
  • Steiner, T., Saenger, W., Closure of the cavity in permethylated cyclodextrins through glucose inversion, flipping, and kinking (1998) Angew. Chem. Int. Ed, 37, p. 340
  • French, A.D., Johnson, G.P., Kelterer, A.-M., Dowd, M.K., Cramer, C.J., Quantum mechanics studies of the intrinsic conformation of trehalose (2002) J. Phys. Chem. A, 106, p. 4988
  • da Silva, C.O., Nascimento, M.A.C., Ab initio conformational maps for disaccharides in gas phase and aqueous solution (2004) Carbohydr. Res, 339, p. 113
  • French, A.D., Johnson, G.P., Quantum mechanics studies of cellobiose conformations (2006) Can. J. Chem, 84, p. 603
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., Molecular mechanics. The MM3 force field for hydrocarbons (1989) J. Am. Chem. Soc, 111, p. 8551
  • Dowd, M.K., French, A.D., Reilly, P.J., Modeling of aldopyranosyl ring puckering with MM3(92) (1994) Carbohydr. Res, 264, p. 1
  • Biarnés, X., Ardèvol, A., Planas, A., Rovira, C., Laio, A., Parrinello, M., The conformational free energy landscape of β-D-glucopyranose. Implications for substrate preactivation in β-glucoside hydrolases (2007) J. Am. Chem. Soc, 129, p. 10686
  • Cremer, D., Pople, J.A., A general definition of ring puckering coordinates (1975) J. Am. Chem. Soc, 97, p. 1354
  • Stortz, C.A., Potential energy surfaces of carrageenan models: Carrabiose, β-(1 → 4)-linked D-galactobiose, and their sulfated derivatives (2002) Carbohydr. Res, 337, p. 2311
  • Stortz, C.A., Cerezo, A.S., Depicting the MM3 potential energy surfaces of trisaccharides by single contour maps: Application to β-cellotriose and α-maltotriose (2003) Carbohydr. Res, 338, p. 95
  • Dowd, M.K., Zeng, J., French, A.D., Reilly, P.J., Conformational analysis of the anomeric forms of kojibiose, nigerose, and maltose using MM3 (1992) Carbohydr. Res, 230, p. 223
  • Dowd, M.K., French, A.D., Reilly, P.J., Conformational analysis of the anomeric forms of sophorose, laminaribiose, and cellobiose using MM3 (1992) Carbohydr. Res, 233, p. 15
  • Dowd, M.K., French, A.D., Reilly, P.J., Conformational analysis of trehalose disaccharides and analogues using MM3 (1992) J. Comput. Chem, 13, p. 102
  • Mendonca, S., Johnson, G.P., French, A.D., Laine, R.A., Conformational analyses of native and permethylated disaccharides (2002) J. Phys. Chem. A, 106, p. 4115
  • Stortz, C.A., Cerezo, A.S., Potential energy surfaces of α-(1 → 3)-linked disaccharides calculated with the MM3 force-field (2002) J. Carbohydr. Chem, 21, p. 355
  • Añibarro, M., Gessler, K., Uson, I., Sheldrick, G.M., Harata, K., Uekama, K., Hirayama, F., Saenger, W., Effect of peracylation of β-cyclodextrin on the molecular structure and on the formation of inclusion complexes: An X-ray study (2001) J. Am. Chem. Soc, 123, p. 11854
  • Harata, K., Hirayama, F., Arima, H., Uekama, K., Miyaji, T., Crystal structure of heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin complexes with m-iodophenol and 4-biphenylacetic acid. Guest-induced conformational change of a pyranose ring (1992) J. Chem. Soc. Perkin Trans. 2, p. 1159
  • French, A.D., Johnson, G.P., Kelterer, A.-M., Csonka, G.I., Fluorinated cellobiose and maltose as stand-ins for energy surface calculations (2005) Tetrahedron: Asymmetry, 16, p. 577
  • Johnson, G.P., Stevens, E.D., French, A.D., Octa-O-propanoyl-β- maltose: Crystal structure, acyl stacking, related structures, and conformational analysis (2007) Carbohydr. Res, 342, p. 1210
  • French, A.D., Johnson, G.P., Linkage and pyranosyl ring twisting in cyclodextrins (2007) Carbohydr. Res, 342, p. 1223
  • Stortz, C.A., Comparative performance of MM3(92) and two Tinker MM3 versions for the modeling of carbohydrates (2005) J. Comput. Chem, 26, p. 471

Citas:

---------- APA ----------
Stortz, C.A. & French, A.D. (2008) . Disaccharide conformational maps: Adiabaticity in analogues with variable ring shapes. Molecular Simulation, 34(4), 373-389.
http://dx.doi.org/10.1080/08927020701663339
---------- CHICAGO ----------
Stortz, C.A., French, A.D. "Disaccharide conformational maps: Adiabaticity in analogues with variable ring shapes" . Molecular Simulation 34, no. 4 (2008) : 373-389.
http://dx.doi.org/10.1080/08927020701663339
---------- MLA ----------
Stortz, C.A., French, A.D. "Disaccharide conformational maps: Adiabaticity in analogues with variable ring shapes" . Molecular Simulation, vol. 34, no. 4, 2008, pp. 373-389.
http://dx.doi.org/10.1080/08927020701663339
---------- VANCOUVER ----------
Stortz, C.A., French, A.D. Disaccharide conformational maps: Adiabaticity in analogues with variable ring shapes. Mol Simul. 2008;34(4):373-389.
http://dx.doi.org/10.1080/08927020701663339