Artículo

Vasen, G.; Battistone, M.A.; Croci, D.O.; Brukman, N.G.; Muñoz, M.W.; Stupirski, J.C.; Rabinovich, G.A.; Cuasnicú, P.S. "The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization" (2015) FASEB Journal. 29(10):4189-4200
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Lectin-glycan recognition systems play central roles in many physiologic and pathologic processes. We identified a role for galectin-1 (Gal-1), a highly conserved glycan-binding protein, in the control of sperm function. We found that Gal-1 is expressed in the epididymis and associates with sperm during epididymal maturation. Exposure of sperm to Gal-1 resulted in glycandependent modulation of the acrosome reaction (AR), a key event in the fertilization process. Gal-1-deficient (Lgals12/2 ) mice revealed the essential contribution of this lectin for full sperm fertilizing ability both in vitro and in vivo. Mechanistically, Lgals12/2 sperm exhibited defects in their ability to develop hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, Lgals12/2 sperm showed a decreased ability to control cell volume and to undergo progesterone-induced AR, phenotypes that were rescued by exposure of the cells to recombinant Gal-1. Interestingly, the AR defect was associated with a deficiency in sperm membrane potential hyperpolarization. Our study highlights the relevance of the Gal-1-glycan axis in sperm function with critical implications in mammalian reproductive biology.-Vasen, G., Battistone, M. A., Croci, D. O., Brukman, N. G., Weigel Muńoz, M., Stupirski, J. C., Rabinovich, G. A., Cuasnicú, P. S. The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization. © FASEB.

Registro:

Documento: Artículo
Título:The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization
Autor:Vasen, G.; Battistone, M.A.; Croci, D.O.; Brukman, N.G.; Muñoz, M.W.; Stupirski, J.C.; Rabinovich, G.A.; Cuasnicú, P.S.
Filiación:Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Acrosome reaction; Capacitation; Fertilization; Glycosylation; galectin 1; glycan; progesterone; galectin 1; polysaccharide; progesterone; recombinant protein; acrosome reaction; adult; animal cell; animal tissue; Article; cell volume; controlled study; cumulus cell; enzyme linked immunosorbent assay; epididymis; female; fertilization; fertilization in vitro; flow cytometry; gamete; genotype; hyperpolarization; immunoblotting; in vitro study; in vivo study; male; membrane fusion; membrane hyperpolarization; membrane potential; mouse; nonhuman; oocyte; ovary; oviduct; priority journal; protein expression; protein phosphorylation; spermatozoon; spermatozoon capacitation; spermatozoon motility; testis; uterus; young adult; zygote; animal; C57BL mouse; cell membrane; cytology; drug effects; fertilization; gene expression; genetics; knockout mouse; metabolism; physiology; reverse transcription polymerase chain reaction; spermatozoon capacitation; spermatozoon motility; Acrosome Reaction; Animals; Cell Membrane; Epididymis; Female; Fertilization; Galectin 1; Gene Expression; Immunoblotting; Male; Membrane Potentials; Mice, Inbred C57BL; Mice, Knockout; Polysaccharides; Progesterone; Recombinant Proteins; Reverse Transcriptase Polymerase Chain Reaction; Sperm Capacitation; Sperm Motility; Spermatozoa; Testis
Año:2015
Volumen:29
Número:10
Página de inicio:4189
Página de fin:4200
DOI: http://dx.doi.org/10.1096/fj.15-270975
Título revista:FASEB Journal
Título revista abreviado:FASEB J.
ISSN:08926638
CODEN:FAJOE
CAS:galectin 1, 258495-34-0; progesterone, 57-83-0; Galectin 1; Polysaccharides; Progesterone; Recombinant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08926638_v29_n10_p4189_Vasen

Referencias:

  • Paulson, J.C., Blixt, O., Collins, B.E., Sweet spots in functional glycomics (2006) Nat. Chem.Biol., 2, pp. 238-248
  • Pang, P.-C., Tissot, B., Drobnis, E.Z., Sutovsky, P., Morris, H.R., Clark, G.F., Dell, A., Expression of bisecting type and Lewisx/ Lewisy terminated N-glycans on human sperm J. Biol (2007) Chem., 282, pp. 36593-36602
  • Xin, A.-J., Cheng, L., Diao, H., Wang, P., Gu, Y.-H., Wu, B., Wu, Y.-C., Tao, S.-C., Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray (2014) Clin. Proteomics, 11, p. 10
  • Easton, R.L., Patankar, M.S., Lattanzio, F.A., Leaven, T.H., Morris, H.R., Clark, G.F., Dell, A., Structural analysis of murine zona pellucida glycans Evidence for the expression of core 2-type O-glycans and the Sd(a) antigen (2000) J. Biol. Chem., 275, pp. 7731-7742
  • Shi, S., Williams, S.A., Seppo, A., Kurniawan, H., Chen, W., Ye, Z., Marth, J.D., Stanley, P., Inactivation of the Mgat1 gene in oocytes impairs oogenesis, but embryos lacking complex and hybrid N-glycans develop and implant (2004) Mol. Cell. Biol., 24, pp. 9920-9929
  • Williams, S.A., Stanley, P., Premature ovarian failure in mice with oocytes lacking core 1-derived O-glycans and complex N-glycans (2011) Endocrinology, 152, pp. 1057-1066
  • Clark, G.F., Dell, A., Molecular models for murine sperm-egg binding (2006) J. Biol.Chem., 281, pp. 13853-13856
  • Hoodbhoy, T., Joshi, S., Boja, E.S., Williams, S.A., Stanley, P., Dean, J., Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins (2005) J. Biol. Chem., 280, pp. 12721-12731
  • Williams, S.A., Xia, L., Cummings, R.D., McEver, R.P., Stanley, P., Fertilization in mouse does not require terminal galactose or N-acetylglucosamine on the zona pellucida glycans (2007) J. Cell Sci., 120, pp. 1341-1349
  • Avella, M.A., Baibakov, B., Dean, J., A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans (2014) J. Cell Biol., 205, pp. 801-809
  • Johnson, J.L., Jones, M.B., Ryan, S.O., Cobb, B.A., The regulatory power of glycans and their binding partners in immunity (2013) Trends Immunol., 34, pp. 290-298
  • Rabinovich, G.A., Toscano, M.A., Jackson, S.S., Vasta, G.R., Functions of cell surface galectin-glycoprotein lattices (2007) Curr. Opin. Struct. Biol., 17, pp. 513-520
  • Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation, galectins and cellular signaling (2011) Curr. Opin. Cell Biol., 23, pp. 383-392
  • Phillips, B., Knisley, K., Weitlauf, K.D., Dorsett, J., Lee, V., Weitlauf, H., Differential expression of two beta-galactosidebinding lectins in the reproductive tracts of pregnant mice (1996) Biol. Reprod., 55, pp. 548-558
  • Dettin, L., Rubinstein, N., Aoki, A., Rabinovich, G.A., Maldonado, C.A., Regulated expression and ultrastructural localization of galectin-1, a proapoptotic beta-galactoside-binding lectin, during spermatogenesis in rat testis (2003) Biol. Reprod., 68, pp. 51-59
  • Von Wolff, M., Wang, X., Gabius, H.-J., Strowitzki, T., Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation (2005) Mol. Hum. Reprod., 11, pp. 189-194
  • Than, N.G., Romero, R., Kim, C.J., McGowen, M.R., Papp, Z., Wildman, D.E., Galectins: Guardians of eutherian pregnancy at the maternal-fetal interface (2012) Trends Endocrinol. Metab., 23, pp. 23-31
  • KolundŽí, N., Bojí-bojeví, Ž., Kovaěeví, T., Stefanoska, I., Kadoya, T., Víovac, L., Galectin-1 is part of human trophoblast invasion machinery-a functional studyin vitro (2011) PLoS ONE, 6, p. e28514
  • Woidacki, K., Popovic, M., Metz, M., Schumacher, A., Linzke, N., Teles, A., Poirier, F., Zenclussen, A.C., Mast cells rescue implantation defects caused by c-kit deficiency (2013) Cell Death Dis., 4, p. e462
  • Freitag, N., Tirado-González, I., Barrientos, G., Herse, F., Thijssen, V.L.J.L., Weedon-Fekjær, S.M., Schulz, H., Blois, S.M., Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia (2013) Proc. Natl. Acad. Sci. USA, 110, pp. 11451-11456
  • Blois, S.M., Ilarregui, J.M., Tometten, M., Garcia, M., Orsal, A.S., Cordo-Russo, R., Toscano, M.A., Arck, P.C., A pivotal role for galectin-1 in fetomaternal tolerance (2007) Nat. Med., 13, pp. 1450-1457
  • Tirado-González, I., Freitag, N., Barrientos, G., Shaikly, V., Nagaeva, O., Strand, M., Kjellberg, L., Blois, S.M., Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy (2013) Mol. Hum. Reprod., 19, pp. 43-53
  • Ramhorst, R.E., Giribaldi, L., Fraccaroli, L., Toscano, M.A., Stupirski, J.C., Romero, M.D., Durand, E.S., Rabinovich, G.A., Galectin-1 confers immune privilege to human trophoblast: Implications in recurrent fetal loss (2012) Glycobiology, 22, pp. 1374-1386
  • Krapf, D., Ruan, Y.C., Wertheimer, E.V., Battistone, M.A., Pawlak, J.B., Sanjay, A., Pilder, S.H., Visconti, P.E., cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit (2012) Dev. Biol., 369, pp. 43-53
  • Fraser, L.R., Drury, L.M., The relationship between sperm concentration and fertilization in vitro of mouse eggs (1975) Biol. Reprod., 13, pp. 513-518
  • Towbin, H., Staehelin, T., Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels tonitrocellulose sheets: Procedure and some applications. 1979 (1992) Biotechnology, 24, pp. 145-149
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Méndez-Huergo, S.P., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., Toscano, M.A., Bianco, G.A., Isturiz, M.A., Rabinovich, G.A., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J. Immunol., 178, pp. 436-445
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Toscano, M.A., Salatino, M., Vermeulen, M.E., Geffner, J.R., Rabinovich, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991
  • Busso, D., Goldweic, N.M., Hayashi, M., Kasahara, M., Cuasnicú, P.S., Evidence for the involvement of testicular protein CRISP2 in mouse sperm-egg fusion (2007) Biol. Reprod., 76, pp. 701-708
  • Zeng, X.-H., Yang, C., Kim, S.T., Lingle, C.J., Xia, X.-M., Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa (2011) Proc.Natl.Acad.Sci.USA, 108, pp. 5879-5884
  • Mortimer, S.T., Swan, M.A., Mortimer, D., Fractal analysis of capacitating human spermatozoa (1996) Hum. Reprod., 11, pp. 1049-1054
  • Armon, L., Eisenbach, M., Behavioral mechanism during human sperm chemotaxis: Involvement of hyperactivation (2011) PLoS ONE, 6, p. e28359
  • Boryshpolets, S., Pérez-Cerezales, S., Eisenbach, M., Behavioral mechanism of human sperm in thermotaxis: A role for hyperactivation (2015) Hum. Reprod., 30, pp. 884-892
  • Brewis, I.A., Morton, I.E., Mohammad, S.N., Browes, C.E., Moore, H.D., Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry (2000) J. Androl., 21, pp. 238-249
  • Escoffier, J., Navarrete, F., Haddad, D., Santi, C.M., Darszon, A., Visconti, P.E., Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation (2015) Biol. Reprod., 92, p. 121
  • Hasegawa, A., Takenobu, T., Kasumi, H., Komori, S., Koyama, K., CD52 is synthesized in cumulus cells and secreted into the cumulus matrix during ovulation (2008) Am. J. Reprod. Immunol., 60, pp. 187-191
  • Yeung, C.H., Sonnenberg-Riethmacher, E., Cooper, T.G., Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms (1999) Biol. Reprod., 61, pp. 1062-1069
  • Florman, H.M., Corron, M.E., Kim, T.D., Babcock, D.F., Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis (1992) Dev. Biol., 152, pp. 304-314
  • De La Vega-Beltran, J.L., Sánchez-Cárdenas, C., Krapf, D., Hernandez-González, E.O., Wertheimer, E., Treviño, C.L., Visconti, P.E., Darszon, A., Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction (2012) J. Biol. Chem., 287, pp. 44384-44393
  • Kopcow, H.D., Rosetti, F., Leung, Y., Allan, D.S.J., Kutok, J.L., Strominger, J.L., T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1 (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 18472-18477
  • Lee, M.Y., Lee, S.H., Park, J.H., Han, H.J., Interaction of galectin-1 with caveolae induces mouse embryonic stem cell proliferation through the Src, ERas, Akt and mTOR signaling pathways (2009) Cell.Mol.LifeSci., 66, pp. 1467-1478
  • Karmakar, S., Cummings, R.D., McEver, R.P., Contributions of Ca2+ to galectin-1-induced exposure of phosphatidylserine on activated neutrophils (2005) J. Biol. Chem., 280, pp. 28623-28631
  • Walzel, H., Brock, J., Pöhland, R., Vanselow, J., Tomek, W., Schneider, F., Tiemann, U., Effects of galectin-1 on regulation of progesterone production in granulosa cells from pig ovaries in vitro (2004) Glycobiology, 14, pp. 871-881
  • Cohen, R., Buttke, D.E., Asano, A., Mukai, C., Nelson, J.L., Ren, D., Miller, R.J., Travis, A.J., Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization (2014) Dev. Cell, 28, pp. 310-321
  • Wang, J., Lu, Z.-H., Gabius, H.-J., Rohowsky-Kochan, C., Ledeen, R.W., Wu, G., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: Possible role in suppressing experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 4036-4045
  • Poirier, F., Robertson, E.J., Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin (1993) Development, 119, pp. 1229-1236
  • Okabe, M., Cummins, J.M., Mechanisms of sperm-egg interactions emerging from gene-manipulated animals (2007) Cell. Mol. Life Sci., 64, pp. 1945-1958
  • Yeung, C.-H., Callies, C., Rojek, A., Nielsen, S., Cooper, T.G., Aquaporin isoforms involved in physiological volume regulation of murine spermatozoa (2009) Biol. Reprod., 80, pp. 350-357
  • Chen, Q., Peng, H., Lei, L., Zhang, Y., Kuang, H., Cao, Y., Shi, Q.-X., Duan, E., Aquaporin3 is a sperm water channel essential for postcopulatory sperm osmoadaptation and migration (2011) Cell Res., 21, pp. 922-933
  • Figueiras-Fierro, D., Acevedo, J.J., Martínez-López, P., Escoffier, J., Sepúlveda, F.V., Balderas, E., Orta, G., Darszon, A., Electrophysiological evidence for the presence of cystic fibrosis transmembrane conductance regulator (CFTR) in mouse sperm (2013) J. Cell. Physiol., 228, pp. 590-601
  • Yeung, C.-H., Anapolski, M., Sipilä, P., Wagenfeld, A., Poutanen, M., Huhtaniemi, I., Nieschlag, E., Cooper, T.G., Sperm volume regulation: Maturational changes in fertile and infertile transgenic mice and association with kinematics and tail angulation (2002) Biol. Reprod., 67, pp. 269-275
  • Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S.A., Chiba, K., Hirohashi, N., Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization (2011) Proc. Natl.Acad. Sci. USA, 108, pp. 4892-4896
  • Cha, S.-K., Ortega, B., Kurosu, H., Rosenblatt, K.P., Kuro-O, M., Huang, C.-L., Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1 (2008) Proc. Natl.Acad. Sci. USA, 105, pp. 9805-9810
  • Copits, B.A., Vernon, C.G., Sakai, R., Swanson, G.T., Modulation of ionotropic glutamate receptor function by vertebrate galectins (2014) J. Physiol., 592, pp. 2079-2096
  • Santi, C.M., Martínez-López, P., De La Vega-Beltrán, J.L., Butler, A., Alisio, A., Darszon, A., Salkoff, L., The SLO3 spermspecific potassium channel plays a vital role in male fertility (2010) FEBS Lett, 584, pp. 1041-1046
  • Yang, C., Zeng, X.-H., Zhou, Y., Xia, X.-M., Lingle, C.J., LRRC52 (leucine-rich-repeat-containing protein 52), a testis-specific auxiliary subunit of the alkalization-activated Slo3 channel (2011) Proc. Natl. Acad.Sci.USA, 108, pp. 19419-19424
  • Zeng, X.-H., Yang, C., Xia, X.-M., Liu, M., Lingle, C.J., SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 2599-2604

Citas:

---------- APA ----------
Vasen, G., Battistone, M.A., Croci, D.O., Brukman, N.G., Muñoz, M.W., Stupirski, J.C., Rabinovich, G.A.,..., Cuasnicú, P.S. (2015) . The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization. FASEB Journal, 29(10), 4189-4200.
http://dx.doi.org/10.1096/fj.15-270975
---------- CHICAGO ----------
Vasen, G., Battistone, M.A., Croci, D.O., Brukman, N.G., Muñoz, M.W., Stupirski, J.C., et al. "The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization" . FASEB Journal 29, no. 10 (2015) : 4189-4200.
http://dx.doi.org/10.1096/fj.15-270975
---------- MLA ----------
Vasen, G., Battistone, M.A., Croci, D.O., Brukman, N.G., Muñoz, M.W., Stupirski, J.C., et al. "The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization" . FASEB Journal, vol. 29, no. 10, 2015, pp. 4189-4200.
http://dx.doi.org/10.1096/fj.15-270975
---------- VANCOUVER ----------
Vasen, G., Battistone, M.A., Croci, D.O., Brukman, N.G., Muñoz, M.W., Stupirski, J.C., et al. The galectin-1-glycan axis controls sperm fertilizing capacity by regulating sperm motility and membrane hyperpolarization. FASEB J. 2015;29(10):4189-4200.
http://dx.doi.org/10.1096/fj.15-270975