Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The compartmental model is a basic tool for studying signal propagation in neurons; if the model parameters are adequately redefined, it can also be helpful in the study of electrical or fluid transport in other biological systems. Here we show that the input resistance in different networks that simulate the morphology of neurons is the result of the interplay between the relevant conductances, neuron morphology, and neuron size. The results suggest that neurons may grow in such a way that facilitates the current flow to the synapses, concurrently minimizing power consumption. © FASEB.

Registro:

Documento: Artículo
Título:Role of transport performance for neuron cell morphology
Autor:Louis, E.; Degli Esposti Boschi, C.; Ortega, G.J.; Fernández, E.
Filiación:Departamento de Física Aplicada, Instituto Universitario de Materiales (IUMA), Universidad de Alicante, Alicante, Spain
Unidad Asociada of the Consejo Superior de Investigaciones Científicas, Universidad de Alicante, Alicante, Spain
CNR-INFM, Unità di Ricerca CNISM di Bologna, Bologna, Italy
Departamento de Física, F.C.E.N. Universidad de Buenos Aires, Ciudad Universitaria, Bueno Aires, Argentina
Instituto de Bioingenieŕa, Universidad Miguel Hernández, Campus de San Juan, Alicante, Spain
Universidad Miguel Hernández, Department of Histology, Fac. Medicina, San Juan 03550, Alicante, Spain
Palabras clave:Compartmental model; Passive properties; article; cell size; cell structure; cell transport; compartment model; electricity; fluid transport; nerve cell; nerve conduction; priority journal; signal transduction; synapse; Animals; Biological Transport; Models, Neurological; Nerve Net; Neurons; Synapses; Synaptic Transmission
Año:2007
Volumen:21
Número:3
Página de inicio:866
Página de fin:871
DOI: http://dx.doi.org/10.1096/fj.06-5977com
Título revista:FASEB Journal
Título revista abreviado:FASEB J.
ISSN:08926638
CODEN:FAJOE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08926638_v21_n3_p866_Louis

Referencias:

  • Thompson, W.D., (2000) On Growth and Form - An Abriged, , Edition Bonner, J. T, ed, Cambridge Univ. Press, Cambridge, UK
  • Haldane, J.B.S., (1985) On Being the Right Size and Other Essays, , Maynard Smith, J, ed, Oxford Univ. Press, Oxford, UK
  • Rushton, W.A.H., A theory of the effects of fiber size in medullated nerve (1951) J. Physiol, 115, pp. 101-122
  • Rall, W., Branching dendritic trees and motoneuron membrane resistivity (1959) Exp. Neurol, 1, pp. 491-527
  • Laughlin, S.B., Sejnowski, T.J., Communication in neuronal networks (2003) Science, 301, pp. 1870-1874
  • Cherniak, C., Component placement optimization in the brain (1994) J. Neurosci, 14, pp. 2418-2427
  • Chklovskii, D.B., Optimal sizes of dendritic and axonal arbors in a topographic projection (2000) J. Neurophysiol, 83, pp. 2113-2119
  • Ramón, Cajal, S., (1995) Histology of the Nervous System of Man and Vertebrates, , Oxford Univ. Press, Oxford, UK
  • Duijnhower, J., Remme, M.W.H., van Ooyen, A., van Pelt, J., Influence of dendritic topology on firing patterns in model neurons (2001) Neurocomputing, 38, pp. 183-189
  • Rall, W., Agmon-Snir, H., Cable Theory for Dendritic Neurons (1998) Methods in Neuronal Modeling, pp. 27-92. , Koch, C, and Segev, I, eds pp, MIT Press, Cambridge, Massachusetts, USA
  • Segev, I., Single neuron models-oversimple, complex and reduced (1992) Trends Neurosci, 15, pp. 414-421
  • Koch, C., (1999) Biophysics of Computation, , Oxford Univ. Press, Oxford, UK
  • Hille, B., (1991) Ionic Channels of Excitable Membranes, , Sinauer Assoc, Inc, Sunderland, MA, USA
  • Fernández, E., Jelinek, H., Use of fractal theory in neuroscience: Methods, advantages and potential problems (2001) Methods, 24, pp. 309-321
  • Panico, J., and Sterling, P. (1995) Retinal neurons and vessels are not fractal but space filling, J. Comp. Neurol. 361, 479-490; West, G.B., Brown, J.H., Enquist, B.J., A general model of the origin of allometric scaling laws in biology (1997) Science, 276, pp. 122-126
  • Bejan, A., (2000) Shape and Structure: From Engineering to Nature, , Cambridge Univ. Press, Cambridge, UK
  • Bejan, A., Errera, M.R., Deterministic tree networks for fluid flow: Geometry and minimal flow resistance between a volume and one point (1997) Fractals, 4, pp. 685-695
  • Fernández, E., Bolea, J.A., Ortega, G., Louis, E., Are neurons multifractals? (1999) J. Neurosci. Methods, 89, pp. 151-157
  • Jelinek, H., Fernández, E., Neuron cells and fractals: How reliable and useful are calculations of fractal dimensions? (1998) J. Neurosci. Methods, 81, pp. 9-18
  • García-Ruiz, J.M., Louis, E., Meakin, P., Sander, L.M., Growth Patterns in Physical Sciences and Biology (1993) Nato ASI Series, , Plenum, New York, NY, USA
  • Vicsek, T., (1992) Fractal Growth Phenomena, , World Scientific Publishing Co, Hackensack, NJ, USA
  • James, T., (1963) The Mathematical Theory of Electricity and Magnetism, , Cambridge Univ. Press, Cambridge, UK
  • Andreu, E., Fernández, E., Louis, E., Ortega, G., Sanchez-Andres, J.V., Role of architecture in determining passive electrical properties in gap junction-connected cells (2000) Pfluegers Arch, 439, pp. 789-797
  • Poznanski, R.R., Umino, O., Syncytial integration by a network of coupled bipolar cells in the retina (1997) Prog. Neurobiol, 412, pp. 273-291
  • Louis, E., Degli Esposti Boschi, C., Ortega, G., Andreu, E., Fernández, E., Sánchez-Andrés, J.V., Effects of fluctuations on electrical properties of gap junction connected cells (2002) J. Neurosci. Lett, 323, pp. 21-24
  • Lamb, T.D., Simon, E.J., The relation between intercellular coupling and electrical noise in turtle photoreceptors (1976) J. Physiol, 263, pp. 257-286
  • Valiunas, V., Bukauskas, F.F., Weingart, R., Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells (1997) Circ. Res, 80, pp. 708-719
  • Umino, O., Maehara, M., Hidaka, M., Kita, S., Hashimoto, Y., The network properties of bipolar-bipolar cell coupling in the retina of teleost fishes (1994) Vis. Neurosci, 11, pp. 533-548
  • Qian, H., Malchow, R.P., Ripps, H., Gap-junctional properties of electrically coupled skate horizontal cells in culture (1993) Vis. Neurosci, 10, pp. 287-295
  • Andreu, E., Soria, B., Sanchez-Andres, J.V., Oscillation of gap junction electrical coupling in the mouse pancreatic islets of Langerhans (1997) J. Physiol, 498, pp. 753-761
  • Hageman, L., Young, D., (1981) Applied Iterative Methods, , Academic Press, San Diego, CA, USA
  • Surkis, A., Taylor, B., Peskin, C.S., Leonard, C.S., Quantitative morphology of physiologically identified and intracellularly labeled neurons from the guinea-pig laterodorsal tegmental nucleus in vitro (1996) Neuroscience, 74, pp. 375-392
  • Rapp, M., Segev, I., Yarom, Y., Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje-cells (1994) J. Physiol, 474, pp. 101-118

Citas:

---------- APA ----------
Louis, E., Degli Esposti Boschi, C., Ortega, G.J. & Fernández, E. (2007) . Role of transport performance for neuron cell morphology. FASEB Journal, 21(3), 866-871.
http://dx.doi.org/10.1096/fj.06-5977com
---------- CHICAGO ----------
Louis, E., Degli Esposti Boschi, C., Ortega, G.J., Fernández, E. "Role of transport performance for neuron cell morphology" . FASEB Journal 21, no. 3 (2007) : 866-871.
http://dx.doi.org/10.1096/fj.06-5977com
---------- MLA ----------
Louis, E., Degli Esposti Boschi, C., Ortega, G.J., Fernández, E. "Role of transport performance for neuron cell morphology" . FASEB Journal, vol. 21, no. 3, 2007, pp. 866-871.
http://dx.doi.org/10.1096/fj.06-5977com
---------- VANCOUVER ----------
Louis, E., Degli Esposti Boschi, C., Ortega, G.J., Fernández, E. Role of transport performance for neuron cell morphology. FASEB J. 2007;21(3):866-871.
http://dx.doi.org/10.1096/fj.06-5977com