La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Experience-dependent plasticity during critical periods of postnatal (PN) development shapes the adult brain anatomy and function. In rat motor system, there is a critical period of activity-dependent plasticity in the striatum (PN30-37). In this period, motor activity of running in a circular path induced in the Circling Training test (CT), elicits several plasticity changes on striatal synapses. It has been recently proposed that developmental critical periods might represent a unique pharmacological window of vulnerability to induce life-lasting behavioral modifications. In this paper we tested the hypothesis of existence of a pharmacological susceptibility to induce adult alterations on motor behavior during the striatal critical period. Due to its main action on the striatum and developmental motor behavioral effects, we applied the prototypical antipsychotic haloperidol to male rats (i.p. 0.7 or 2.5 mg/kg/day) before, during or after the period of plasticity (PN20-27, PN30-37 or PN40-47 respectively). Then, in the adulthood (PN80), we evaluated induced motor activity in the CT. The results showed that only rats exposed to the D2R blocker during the period PN30-37 increased the CT activity in comparison to control rats. Moreover, only these animals also showed an increase in the spontaneous locomotor activity at the open field test. These behavioral alterations were not accompanied by permanent striatal changes either on the number of D2R binding sites or on its mRNA expression levels. In conclusion, we have shown a pharmacological susceptibility of inducing adult motor behavior alterations by haloperidol during a natural critical period of activity-dependent plasticity (PN30-37) in rat striatum development. These results also emphasize the importance of behavioral screening for pharmacological agents to be used in developmental stages of maturation. © 2009 Elsevier Inc. All rights reserved.


Documento: Artículo
Título:Developmental striatal critical period of activity-dependent plasticity is also a window of susceptibility for haloperidol induced adult motor alterations
Autor:Soiza-Reilly, M.; Azcurra, J.M.
Filiación:Laboratorio de Biología Celular, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Critical period; Haloperidol; Motor behavior; Plasticity; Postnatal development; Striatum; dopamine 2 receptor; haloperidol; animal experiment; article; behavior disorder; binding site; brain development; controlled study; corpus striatum; disease predisposition; instrumental conditioning; locomotion; male; motor performance; nerve cell plasticity; nonhuman; open field test; postnatal development; priority journal; protein expression; rat; Age Factors; Animals; Antipsychotic Agents; Binding Sites; Brain Chemistry; Corpus Striatum; Dopamine; Dopamine Antagonists; Dyskinesia, Drug-Induced; Haloperidol; Male; Motor Activity; Neuronal Plasticity; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; RNA, Messenger; Time; Animalia; Rattus
Página de inicio:191
Página de fin:197
Título revista:Neurotoxicology and Teratology
Título revista abreviado:Neurotoxicol. Teratol.
CAS:haloperidol, 52-86-8; Antipsychotic Agents; Dopamine Antagonists; Haloperidol, 52-86-8; RNA, Messenger; Receptors, Dopamine D2


  • Adams, J., Barone Jr., S., LaMantia, A., Philen, R., Rice, D.C., Spear, L., Susser, E., Workshop to identify critical windows of exposure for children's health: neurobehavioral work group summary (2000) Environ. Health Perspect., 3, pp. 535-544
  • Adriani, W., Leo, D., Greco, D., Rea, M., Di Porzio, U., Laviola, G., Perrone-Capano, C., Methylphenidate administration to adolescent rats determines plastic changes on reward-related behavior and striatal gene expression (2006) Neuropsycopharmacology, 31, pp. 1946-1956
  • Adriani, W., Granstrem, O., Macri, S., Izykenova, G., Dambinova, S., Laviola, G., Behavioral and neurochemical vulnerability during adolescence in mice: studies with nicotine (2004) Neuropsychopharmacology, 29, pp. 869-878
  • Albin, R.L., Young, A.B., Penney, J.B., The functional anatomy of basal ganglia disorders (1989) Trends Neurosci., 12, pp. 366-375
  • Andersen, S.L., Trajectories of brain development: point of vulnerability or window of opportunity? (2003) Neurosci. Biobehav. Rev., 27, pp. 3-18
  • Andersen, S.L., Stimulants and the developing brain (2005) Trends Pharmacol. Sci., 26, pp. 237-243
  • Andersen, S.L., Arvanitogiannis, A., Pliakas, A.M., LeBlanc, C., Carlezon Jr., W.A., Altered responsiveness to cocaine in rats exposed to methylphenidate during development (2002) Nat. Neurosci., 5, pp. 13-14
  • Atallah, H.E., Lopez-Paniagua, D., Rudy, J.W., O'Reilly, R.C., Separate neural substrates for skill learning and performance in the ventral and dorsal striatum (2007) Nat. Neurosci., 10, pp. 126-131
  • Azcurra, J.M., Soiza-Reilly, M., Fossati, M., Paratcha, G.Ch., Delayed and bilateral changes of GAP-43/B-50 phosphorylation after circling training during a critical period in rat striatum (2003) Mol. Brain Res., 118, pp. 166-170
  • Bach, M.E., Simpson, E.H., Kahn, L., Marshall, J.J., Kandel, E.R., Kellendonk, C., Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 16027-16032
  • Balleine, B.W., Delgado, M.R., Hikosaka, O., The role of the dorsal striatum in reward and decision-making (2007) J. Neurosci., 27, pp. 8161-8165
  • Barbaresi, W.J., Use of psychotropic medications in young preschool children: primum non nocere (2003) Arch. Pediatr. Adolesc. Med., 157, pp. 121-123
  • Berardi, N., Pizzorusso, T., Maffei, L., Critical periods during sensory development (2000) Curr. Opin. Neurobiol., 10, pp. 138-145
  • Brusés, J.L., Azcurra, J.M., The circling training: a behavioral paradigm for functional teratology testing (1993) Paradigms for the study of behavior, Methods in Neuroscience, 14, pp. 166-179. , Conn P.M. (Ed), Academic Press, New York
  • Brusés, J.L., Berninsone, P.M., Ojea, S., Azcurra, J.M., The circling training rat model as a behavioral teratology test (1991) Pharmacol. Biochem. Behav., 38, pp. 739-745
  • Carlezon Jr., W.A., Mague, S.D., Andersen, S.L., Enduring behavioral effects of early exposure to methylphenidate in rats (2003) Biol. Psychiatry, 54, pp. 1330-1337
  • Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal. Biochem., 162, pp. 156-159
  • Creese, I., Burt, D.R., Snyder, S.H., Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenics drugs (1976) Science, 192, pp. 481-483
  • Crews, F., He, J., Hodge, C., Adolescent cortical development: a critical period of vulnerability for addiction (2007) Pharmacol. Biochem. Behav., 86, pp. 189-199
  • Cuomo, V., Cagiano, R., Renna, G., Serinelli, A., Brunillo, N., Racagni, G., Comparative evaluation of the behavioural consequences of prenatal and early postnatal exposure to haloperidol in rats (1985) Neurobehav. Toxicol. Teratol., 7, pp. 489-492
  • Drew, M.R., Simpson, E.H., Kellendonk, Ch., Herzberg, W.G., Lipatova, O., Fairhurst, S., Kandel, E.R., Balsam, P.D., Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing (2007) J. Neurosci., 27, pp. 7731-7739
  • Ellgren, M., Spano, S.M., Hurd, Y.L., Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats (2007) Neuropsychopharmacology, 32, pp. 607-615
  • Gerdeman, G.L., Partridge, J.G., Lupica, C.R., Lovinger, D.M., It could be habit forming: drugs of abuse and striatal synaptic plasticity (2003) Trends Neurosci., 26, pp. 184-192
  • Hensch, T.K., Critical period plasticity in local cortical circuits (2005) Nat. Rev. Neurosci., 6, pp. 877-888
  • Hooks, B.M., Chen, C., Critical periods in the visual system: changing views for a model of experience-dependent plasticity (2007) Neuron, 56, pp. 312-326
  • Hubel, D.H., Wiesel, T.N., The period of susceptibility to the physiological effects of unilateral eye closure in kittens (1970) J. Physiol. (Lond.), 206, pp. 419-436
  • Ibarra, G.R., Paratcha, G.Ch., Wolansky, M.J., Azcurra, J.M., Co-alteration of dopamine D2 receptor and muscarinic acetylcholine receptor binding in rat striatum after circling training (1996) Neuroreport, 7, pp. 2491-2494
  • Ibarra, G.R., Rodríguez, J.A., Paratcha, G.Ch., Azcurra, J.M., Permanent alteration of muscarinic acetylcholine receptor binding in rat striatum after circling training during striatal development (1995) Brain Res., 705, pp. 39-44
  • Katz, L.C., What's critical for the critical period in visual cortex? (1999) Cell, 99, pp. 673-676
  • Konradi, C., Heckers, S., Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia (2001) Biol. Psychiatry, 50, pp. 729-742
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCtmethod (2001) Methods, 25, pp. 402-408
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Mague, S.D., Andersen, S.L., Carlezon Jr., W.A., Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats (2005) Biol. Psychiatry, 57, pp. 120-125
  • Masi, G., Mucci, M., Pari, C., Children with schizophrenia: clinical picture and pharmacological treatment (2006) CNS Drugs, 20, pp. 841-866
  • O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., Dolan, R.J., Dissociable roles of ventral and dorsal striatum in instrumental conditioning (2004) Science, 304, pp. 452-454
  • Olfson, M., Blanco, C., Liu, L., Moreno, C., Laje, G., National trends in the outpatient treatment of children and adolescents with antipsychotic drugs (2006) Arch. Gen. Psychiatry, 63, pp. 679-685
  • Paratcha, G.Ch., Ibarra, G.R., Cabrera, R., Azcurra, J.M., Decreased phosphorylation of GAP-43/B-50 in striatal synaptic plasma membranes after circling motor activity (1998) Neurochem. Res., 23, pp. 1241-1249
  • Paratcha, G.Ch., Ibarra, G.R., Wolansky, M.J., Rodriguez, J.A., Azcurra, J.M., Decreased GAP-43/B-50 phosphorylation in striatal synaptic plasma membranes after circling motor behavior during development (1999) Mol. Brain Res., 65, pp. 34-43
  • Shalaby, I.A., Spear, L.P., Chronic administration of haloperidol during development: later psychopharmacological responses to apomorphine and arecoline (1980) Pharmacol. Biochem. Behav., 13, pp. 685-690
  • Soiza-Reilly, M., Fossati, M., Ibarra, G.R., Azcurra, J.M., Different dopamine D1 and D2 receptors expression after motor activity in the striatal critical period (2004) Brain Res., 1004, pp. 217-221
  • Spear, L.P., The adolescent brain and age-related behavioral manifestations (2000) Neurosci. Biobehav. Rev., 24, pp. 417-463
  • Spear, L.P., Shalaby, I.A., Brick, J., Chronic administration of haloperidol during development: behavioral and psychopharmacological effects (1980) Psychopharmacology (Berl.), 70, pp. 47-58
  • Stanwood, G., Levitt, P., Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development (2004) Curr. Opin. Pharmacol., 4, pp. 65-71
  • Thomas, C.P., Conrad, P., Casler, R., Goodman, E., Trends in the use of psychotropic medications among adolescents, 1994 to 2001 (2006) Psychiatr. Serv., 57, pp. 63-69
  • Vorhees, C.V., Reed, T.M., Morford, L.L., Fukumura, M., Wood, S.L., Brown, C.A., Skelton, M.R., Williams, M.T., Periadolescent rats (P41-50) exhibit increased susceptibility to D-methampethamine-induced long-term spatial and sequential learning deficits compared to juvenile (P21-30 or P31-40) or adult rats (P51-60) (2005) Neurotoxicol. Teratol., 27, pp. 117-134
  • Williams, Z.M., Eskandar, E.N., Selective enhancement of associative learning by microstimulation of the anterior caudate (2006) Nat. Neurosci., 9, pp. 562-568
  • Wolansky, M.J., Cabrera, R.J., Ibarra, G.R., Mongiat, L., Azcurra, J.M., Exogenous NGF alters a critical motor period in rat striatum (1999) Neuroreport, 10, pp. 1-5
  • Wolansky, M.J., Paratcha, G.Ch., Ibarra, G.R., Azcurra, J.M., Nerve Growth Factor preserves a critical motor period in rat striatum (1999) J. Neurobiol., 38, pp. 129-136
  • Wolansky, M.J., Soiza-Reilly, M., Fossati, M., Azcurra, J.M., Postnatal haloperidol eliminates the deficit in circling behavior produced by prenatal exposure to the same drug (2004) Neurotoxicol. Teratol., 26, pp. 561-569
  • Young, L.T., Wong, D.F., Goldman, S., Minkin, E., Chen, C., Matsumura, K., Scheffel, U., Wagner Jr., H.N., Effects of endogenous dopamine on kinetics of [3H]N-methylspiperone and [3H]raclopride binding in the rat brain (1991) Synapse, 9, pp. 188-194
  • Zito, J.M., Safer, D.J., DosReis, S., Gardner, J.F., Boles, M., Lynch, F., Trends in the prescribing of psychotropic medications in preschoolers (2000) JAMA, 283, pp. 1025-1030


---------- APA ----------
Soiza-Reilly, M. & Azcurra, J.M. (2009) . Developmental striatal critical period of activity-dependent plasticity is also a window of susceptibility for haloperidol induced adult motor alterations. Neurotoxicology and Teratology, 31(4), 191-197.
---------- CHICAGO ----------
Soiza-Reilly, M., Azcurra, J.M. "Developmental striatal critical period of activity-dependent plasticity is also a window of susceptibility for haloperidol induced adult motor alterations" . Neurotoxicology and Teratology 31, no. 4 (2009) : 191-197.
---------- MLA ----------
Soiza-Reilly, M., Azcurra, J.M. "Developmental striatal critical period of activity-dependent plasticity is also a window of susceptibility for haloperidol induced adult motor alterations" . Neurotoxicology and Teratology, vol. 31, no. 4, 2009, pp. 191-197.
---------- VANCOUVER ----------
Soiza-Reilly, M., Azcurra, J.M. Developmental striatal critical period of activity-dependent plasticity is also a window of susceptibility for haloperidol induced adult motor alterations. Neurotoxicol. Teratol. 2009;31(4):191-197.