Artículo

Arias, D.G.; Cabeza, M.S.; Erben, E.D.; Carranza, P.G.; Lujan, H.D.; Iñón, M.T.T.; Iglesias, A.A.; Guerrero, S.A. "Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp." (2011) Free Radical Biology and Medicine. 50(1):37-46
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Methionine is an amino acid susceptible to being oxidized to methionine sulfoxide (MetSO). The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductase (MSR), an enzyme present in almost all organisms. In trypanosomatids, the study of antioxidant systems has been mainly focused on the involvement of trypanothione, a specific redox component in these organisms. However, no information is available concerning their mechanisms for repairing oxidized proteins, which would be relevant for the survival of these pathogens in the various stages of their life cycle. We report the molecular cloning of three genes encoding a putative A-type MSR in trypanosomatids. The genes were expressed in Escherichia coli, and the corresponding recombinant proteins were purified and functionally characterized. The enzymes were specific for L-Met(S)SO reduction, using Trypanosoma cruzi tryparedoxin I as the reducing substrate. Each enzyme migrated in electrophoresis with a particular profile reflecting the differences they exhibit in superficial charge. The in vivo presence of the enzymes was evidenced by immunological detection in replicative stages of T. cruzi and Trypanosoma brucei. The results support the occurrence of a metabolic pathway in Trypanosoma spp. involved in the critical function of repairing oxidized macromolecules. © 2010 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp.
Autor:Arias, D.G.; Cabeza, M.S.; Erben, E.D.; Carranza, P.G.; Lujan, H.D.; Iñón, M.T.T.; Iglesias, A.A.; Guerrero, S.A.
Filiación:Instituto de Agrobiotecnología Del Litoral, UNL-CONICET, 3000 Santa Fe, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba, Córdoba, Argentina
Palabras clave:Free radicals; Methionine sulfoxide; Oxidative stress; Trypanosoma; Trypanothione; Tryparedoxin; methionine sulfoxide reductase A; reducing agent; tryparedoxin I; unclassified drug; article; electrophoresis; Escherichia coli; gene expression; gene identification; gene overexpression; molecular cloning; oxidation reduction reaction; priority journal; Trypanosoma brucei; Trypanosoma cruzi; Amino Acid Sequence; Animals; Cells, Cultured; Cercopithecus aethiops; Cloning, Molecular; Metabolic Detoxication, Phase I; Metabolic Networks and Pathways; Methionine Sulfoxide Reductases; Models, Molecular; Molecular Sequence Data; Oxidation-Reduction; Oxidative Stress; Sequence Homology; Trypanosoma; Trypanosoma brucei brucei; Trypanosoma cruzi; Vero Cells; Escherichia coli; Trypanosoma; Trypanosoma brucei; Trypanosoma cruzi; Trypanosomatidae
Año:2011
Volumen:50
Número:1
Página de inicio:37
Página de fin:46
DOI: http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.695
Título revista:Free Radical Biology and Medicine
Título revista abreviado:Free Radic. Biol. Med.
ISSN:08915849
CODEN:FRBME
CAS:Methionine Sulfoxide Reductases, 1.8.4.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08915849_v50_n1_p37_Arias

Referencias:

  • Nordberg, J., Arner, E.S., Reactive oxygen species, antioxidants, and the mammalian thioredoxin system (2001) Free Radic. Biol. Med., 31, pp. 1287-1312
  • Moskovitz, J., Methionine sulfoxide reductases: Ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases (2005) Biochim. Biophys. Acta, 1703, pp. 213-219
  • Friguet, B., Oxidized protein degradation and repair in ageing and oxidative stress (2006) FEBS Lett., 580, pp. 2910-2916
  • Boschi-Muller, S., Gand, A., Branlant, G., The methionine sulfoxide reductases: Catalysis and substrate specificities (2008) Arch. Biochem. Biophys., 474, pp. 266-273
  • Moskovitz, J., Flescher, E., Berlett, B.S., Azare, J., Poston, J.M., Stadtman, E.R., Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress (1998) Proc. Natl Acad. Sci. USA, 95, pp. 14071-14075
  • Bechtold, U., Murphy, D.J., Mullineaux, P.M., Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights (2004) Plant Cell, 16, pp. 908-919
  • Olry, A., Boschi-Muller, S., Marraud, M., Sanglier-Cianferani, S., Van Dorsselear, A., Branlant, G., Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis (2002) Journal of Biological Chemistry, 277 (14), pp. 12016-12022. , DOI 10.1074/jbc.M112350200
  • Moskovitz, J., Singh, V.K., Requena, J., Wilkinson, B.J., Jayaswal, R.K., Stadtman, E.R., Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity (2002) Biochem. Biophys. Res. Commun., 290, pp. 62-65
  • Lee, W.L., Gold, B., Darby, C., Brot, N., Jiang, X., De Carvalho, L.P., Wellner, D., Nathan, C., Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite (2009) Mol. Microbiol., 71, pp. 583-593
  • Moskovitz, J., Poston, J.M., Berlett, B.S., Nosworthy, N.J., Szczepanowski, R., Stadtman, E.R., Identification and characterization of a putative active site for peptide methionine sulfoxide reductase (MsrA) and its substrate stereospecificity (2000) J. Biol. Chem., 275, pp. 14167-14172
  • Krauth-Siegel, R.L., Comini, M.A., Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism (2008) Biochim. Biophys. Acta, 1780, pp. 1236-1248
  • Irigoin, F., Cibils, L., Comini, M.A., Wilkinson, S.R., Flohe, L., Radi, R., Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification (2008) Free Radic. Biol. Med., 45, pp. 733-742
  • El-Sayed, N.M., Myler, P.J., Bartholomeu, D.C., Nilsson, D., Aggarwal, G., Tran, A.N., Ghedin, E., Andersson, B., The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease (2005) Science, 309, pp. 409-415
  • Flohe, L., Hecht, H.J., Steinert, P., Glutathione and trypanothione in parasitic hydroperoxide metabolism (1999) Free Radic. Biol. Med., 27, pp. 966-984
  • Flohe, L., Steinert, P., Hecht, H.J., Hofmann, B., Tryparedoxin and tryparedoxin peroxidase (2002) Meth. Enzymol., 347, pp. 244-258
  • Piacenza, L., Alvarez, M.N., Peluffo, G., Radi, R., Fighting the oxidative assault: The Trypanosoma cruzi journey to infection (2009) Curr. Opin. Microbiol., 12, pp. 415-421
  • Gomez, M.L., Erijman, L., Arauzo, S., Torres, H.N., Tellez-Inon, M.T., Protein kinase C in Trypanosoma cruzi epimastigote forms: Partial purification and characterization (1989) Mol. Biochem. Parasitol., 36, pp. 101-108
  • Allaoui, A., Francois, C., Zemzoumi, K., Guilvard, E., Ouaissi, A., Intracellular growth and metacyclogenesis defects in Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele (1999) Mol. Microbiol., 32, pp. 1273-1286
  • Andrews, N.W., Colli, W., Adhesion and interiorization of Trypanosoma cruzi in mammalian cells (1982) J. Protozool., 29, pp. 264-269
  • Maniatis, T., Fritsch, E.F., Sambrook, J., (1982) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Laboratory Cold Spring Harbor, NY
  • Wilkinson, S.R., Meyer, D.J., Taylor, M.C., Bromley, E.V., Miles, M.A., Kelly, J.M., The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin (2002) J. Biol. Chem., 277, pp. 17062-17071
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
  • Vaitukaitis, J., Robbins, J.B., Nieschlag, E., Ross, G.T., A method for producing specific antisera with small doses of immunogen (1971) J. Clin. Endocrinol. Metab., 33, pp. 988-991
  • Ferguson, K.A., Starch-gel electrophoresis-application to the classification of pituitary proteins and polypeptides (1964) Metabolism, 13 (SUPPL.), pp. 985-1002
  • Forman, H., Fukuto, J., Torres, M., (2004) Signal Transduction by Reactive Oxygen and Nitrogen Species: Pathways and Chemical Principles, , Kluwer Academic Dordrecht
  • Kelly, J.M., Ward, H.M., Miles, M.A., Kendall, G., A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania (1992) Nucleic Acids Res., 20, pp. 3963-3969
  • Tetaud, E., Lecuix, I., Sheldrake, T., Baltz, T., Fairlamb, A.H., A new expression vector for Crithidia fasciculata and Leishmania (2002) Mol. Biochem. Parasitol., 120, pp. 195-204
  • Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., Sali, A., Comparative protein structure modeling using MODELLER (2006) Current Protocols in Protein Science, (SUPPL. 15). , John Wiley & Sons, Inc., 5.6.1-5.6.30 University of California at San Francisco, San Francisco, California, USA
  • Kauffmann, B., Aubry, A., Favier, F., The three-dimensional structures of peptide methionine sulfoxide reductases: Current knowledge and open questions (2005) Biochim. Biophys. Acta, 1703, pp. 249-260
  • Boschi-Muller, S., Olry, A., Antoine, M., Branlant, G., The enzymology and biochemistry of methionine sulfoxide reductases (2005) Biochim. Biophys. Acta, 1703, pp. 231-238
  • Boschi-Muller, S., Azza, S., Branlant, G., E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide (2001) Protein Sci., 10, pp. 2272-2279
  • Rodbard, D., Chrambach, A., Unified theory for gel electrophoresis and gel filtration (1970) Proc. Natl Acad. Sci. USA, 65, pp. 970-977
  • Coudevylle, N., Antoine, M., Bouguet-Bonnet, S., Mutzenhardt, P., Boschi-Muller, S., Branlant, G., Cung, M.T., Solution structure and backbone dynamics of the reduced form and an oxidized form of E. coli methionine sulfoxide reductase A (MsrA): Structural insight of the MsrA catalytic cycle (2007) J. Mol. Biol., 366, pp. 193-206
  • Taylor, A.B., Benglis Jr., D.M., Dhandayuthapani, S., Hart, P.J., Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with protein-bound methionine (2003) J. Bacteriol., 185, pp. 4119-4126
  • Sato, Y., Nishida, M., Electric charge divergence in proteins: Insights into the evolution of their three-dimensional properties (2009) Gene, 441, pp. 3-11
  • Moskovitz, J., Bar-Noy, S., Williams, W.M., Requena, J., Berlett, B.S., Stadtman, E.R., Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals (2001) Proc. Natl Acad. Sci. USA, 98, pp. 12920-12925
  • Wilkinson, S.R., Obado, S.O., Mauricio, I.L., Kelly, J.M., Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum (2002) Proc. Natl Acad. Sci. USA, 99, pp. 13453-13458
  • Krauth-Siegel, R.L., Comini, M.A., Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism (2008) Biochim. Biophys. Acta, 1780, pp. 1236-1248
  • Pineyro, M.D., Parodi-Talice, A., Arcari, T., Robello, C., Peroxiredoxins from Trypanosoma cruzi: Virulence factors and drug targets for treatment of Chagas disease? (2008) Gene, 408, pp. 45-50
  • Rouhier, N., Kauffmann, B., Tete-Favier, F., Palladino, P., Gans, P., Branlant, G., Jacquot, J.P., Boschi-Muller, S., Functional and structural aspects of poplar cytosolic and plastidial type A methionine sulfoxide reductases (2007) J. Biol. Chem., 282, pp. 3367-3378
  • Lee, B.C., Lee, Y.K., Lee, H.J., Stadtman, E.R., Lee, K.H., Chung, N., Cloning and characterization of antioxidant enzyme methionine sulfoxide-S-reductase from Caenorhabditis elegans (2005) Arch. Biochem. Biophys., 434, pp. 275-281
  • Schmidt, H., Krauth-Siegel, R.L., Functional and physicochemical characterization of the thioredoxin system in Trypanosoma brucei (2003) J. Biol. Chem., 278, pp. 46329-46336
  • Holst, M., Kozack, R.E., Saied, F., Subramaniam, S., Treatment of electrostatic effects in proteins: Multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation (1994) Proteins: Structure, Function and Genetics, 18 (3), pp. 231-245
  • Souza, J.M., Radi, R., Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite (1998) Arch. Biochem. Biophys., 360, pp. 187-194
  • Boschi-Muller, S., Azza, S., Sanglier-Cianferani, S., Talfournier, F., Van Dorsselear, A., Branlant, G., A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli (2000) J. Biol. Chem., 275, pp. 35908-35913
  • Kelly, J.M., Taylor, M.C., Smith, K., Hunter, K.J., Fairlamb, A.H., Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase: Sensitivity towards agents that are thought to induce oxidative stress (1993) Eur. J. Biochem., 218, pp. 29-37
  • Piacenza, L., Peluffo, G., Alvarez, M.N., Kelly, J.M., Wilkinson, S.R., Radi, R., Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite (2008) Biochem. J., 410, pp. 359-368
  • St John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H., Nathan, C., Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates (2001) Proc. Natl Acad. Sci. USA, 98, pp. 9901-9906
  • Cabreiro, F., Picot, C.R., Perichon, M., Friguet, B., Petropoulos, I., Overexpression of methionine sulfoxide reductases A and B2 protects MOLT-4 cells against zinc-induced oxidative stress (2009) Antioxid. Redox Signaling, 11, pp. 215-225
  • Holland, H.L., Gu, J.X., Orallo, F., Camina, M., Fabeiro, P., Willetts, A.J., Enantioselective synthesis and pharmacological evaluation of a new type of verapamil analog with hypotensive and calcium antagonist activities (1999) Pharm Res, 16, pp. 281-287

Citas:

---------- APA ----------
Arias, D.G., Cabeza, M.S., Erben, E.D., Carranza, P.G., Lujan, H.D., Iñón, M.T.T., Iglesias, A.A.,..., Guerrero, S.A. (2011) . Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Free Radical Biology and Medicine, 50(1), 37-46.
http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.695
---------- CHICAGO ----------
Arias, D.G., Cabeza, M.S., Erben, E.D., Carranza, P.G., Lujan, H.D., Iñón, M.T.T., et al. "Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp." Free Radical Biology and Medicine 50, no. 1 (2011) : 37-46.
http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.695
---------- MLA ----------
Arias, D.G., Cabeza, M.S., Erben, E.D., Carranza, P.G., Lujan, H.D., Iñón, M.T.T., et al. "Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp." Free Radical Biology and Medicine, vol. 50, no. 1, 2011, pp. 37-46.
http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.695
---------- VANCOUVER ----------
Arias, D.G., Cabeza, M.S., Erben, E.D., Carranza, P.G., Lujan, H.D., Iñón, M.T.T., et al. Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Free Radic. Biol. Med. 2011;50(1):37-46.
http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.695