Artículo

Carballal, S.; Valez, V.; Alvarez-Paggi, D.; Tovmasyan, A.; Batinic-Haberle, I.; Ferrer-Sueta, G.; Murgida, D.H.; Radi, R. "Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite" (2018) Free Radical Biology and Medicine. 126:379-392
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cationic manganese(III) ortho N-substituted pyridylporphyrins (MnP) act as efficient antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. Importantly, MnP can reach mitochondria offering protection against reactive species in different animal models of disease. Although an LC-MS/MS-based method for MnP quantitation and subcellular distribution has been reported, a direct method capable of evaluating both the uptake and the redox state of MnP in living cells has not yet been developed. In the present work we applied resonance Raman (RR) spectroscopy to analyze the intracellular accumulation of two potent MnP-based lipophilic SOD mimics, MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+ within endothelial cells. RR experiments with isolated mitochondria revealed that the reduction of Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. To assess the combined impact of reactivity and bioavailability, we studied the kinetics of Mn(III)TnBuOE-2-PyP5+ with peroxynitrite and evaluated the cytoprotective capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation of cell damage and prevention of apoptotic cell death. These data introduce a novel application of RR spectroscopy for the direct detection of MnP and their redox states inside living cells, and helps to rationalize their antioxidant capacity in biological systems. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite
Autor:Carballal, S.; Valez, V.; Alvarez-Paggi, D.; Tovmasyan, A.; Batinic-Haberle, I.; Ferrer-Sueta, G.; Murgida, D.H.; Radi, R.
Filiación:Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires, C1428EHA, Argentina
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States
Palabras clave:Endothelial cells; Manganese porphyrin; Mitochondria; Peroxynitrite; Resonance Raman; antioxidant; manganese derivative; manganese meso tetrakis(n n butoxyethylpyridinium 2 yl)porphyrin; manganese meso tetrakis[(n n hexyl)pyridinium 2 yl]porphyrin; peroxynitrite; porphyrin derivative; superoxide dismutase; unclassified drug; animal cell; antioxidant activity; apoptosis; Article; BAEC cell line; cell damage; cell protection; controlled study; electron transport; endothelium cell; mitochondrion; nitrosative stress; nonhuman; oxidation reduction state; oxidative stress; priority journal; Raman spectrometry
Año:2018
Volumen:126
Página de inicio:379
Página de fin:392
DOI: http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.023
Título revista:Free Radical Biology and Medicine
Título revista abreviado:Free Radic. Biol. Med.
ISSN:08915849
CODEN:FRBME
CAS:superoxide dismutase, 37294-21-6, 9016-01-7, 9054-89-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08915849_v126_n_p379_Carballal

Referencias:

  • Archibald, F.S., Fridovich, I., The scavenging of superoxide radical by manganous complexes: in vitro (1982) Arch. Biochem. Biophys., 214, pp. 452-463
  • Batinic-Haberle, I., Liochev, S.I., Spasojevic, I., Fridovich, I., A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl) porphyrin (1997) Arch. Biochem. Biophys., 343, pp. 225-233
  • Batinic-Haberle, I., Manganese porphyrins and related compounds as mimics of superoxide dismutase (2002) Methods Enzymol., 349, pp. 223-233
  • Batinic-Haberle, I., Spasojević, I., Hambright, P., Benov, L., Crumbliss, A.L., Fridovich, I., Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins (1999) Inorg. Chem., 38, pp. 4011-4022
  • Batinic-Haberle, I., Spasojevic, I., Stevens, R.D., Hambright, P., Neta, P., Okado-Matsumoto, A., Fridovich, I., New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins (2004) Dalton Trans., pp. 1696-1702
  • Faulkner, K.M., Liochev, S.I., Fridovich, I., Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo (1994) J. Biol. Chem., 269, pp. 23471-23476
  • Tovmasyan, A., Maia, C.G.C., Weitner, T., Carballal, S., Sampaio, R.S., Lieb, D., Ghazaryan, R., Batinic-Haberle, I., A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics (2015) Free Radic. Biol. Med., 86, pp. 308-321
  • Ferrer-Sueta, G., Vitturi, D., Batinic-Haberle, I., Fridovich, I., Goldstein, S., Czapski, G., Radi, R., Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion (2003) J. Biol. Chem., 278, pp. 27432-27438
  • Ferrer-Sueta, G., Batinic-Haberle, I., Spasojevic, I., Fridovich, I., Radi, R., Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants (1999) Chem. Res. Toxicol., 12, pp. 442-449
  • Ferrer-Sueta, G., Ruiz-Ramirez, L., Radi, R., Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics (1997) Chem. Res. Toxicol., 10, pp. 1338-1344
  • Groves, J.T., Marla, S.S., Peroxynitrite-induced DNA strand scission mediated by a manganese porphyrin (1995) J. Am. Chem. Soc., 117, pp. 9578-9579
  • Lee, J., Hunt, J., Groves, J.T., Rapid decomposition of peroxynitrite by manganese porphyrin-antioxidant redox couples (1997) Bioorg. Med. Chem. Lett., 7, pp. 2913-2918
  • Spasojevic, I., Batinic-Haberle, I., Reboucas, J.S., Idemori, Y.M., Fridovich, I., Electrostatic contribution in the catalysis of O2*- dismutation by superoxide dismutase mimics. MnIIITE-2-PyP5+ versus MnIIIBr8T-2-PyP+ (2003) J. Biol. Chem., 278, pp. 6831-6837
  • Tovmasyan, A., Carballal, S., Ghazaryan, R., Melikyan, L., Weitner, T., Maia, C.G., Reboucas, J.S., Batinic-Haberle, I., Rational design of superoxide dismutase (SOD) mimics: the evaluation of the therapeutic potential of new cationic Mn porphyrins with linear and cyclic substituents (2014) Inorg. Chem., 53, pp. 11467-11483
  • Trostchansky, A., Ferrer-Sueta, G., Batthyany, C., Botti, H., Batinic-Haberle, I., Radi, R., Rubbo, H., Peroxynitrite flux-mediated LDL oxidation is inhibited by manganese porphyrins in the presence of uric acid (2003) Free Radic. Biol. Med., 35, pp. 1293-1300
  • Batinic-Haberle, I., Spasojevic, I., Fridovich, I., Tetrahydrobiopterin rapidly reduces the SOD mimic Mn(III) ortho-tetrakis(N-ethylpyridinium-2-yl)porphyrin (2004) Free Radic. Biol. Med., 37, pp. 367-374
  • Ferrer-Sueta, G., Hannibal, L., Batinic-Haberle, I., Radi, R., Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite (2006) Free Radic. Biol. Med., 41, pp. 503-512
  • Kachadourian, R., Johnson, C.A., Min, E., Spasojevic, I., Day, B.J., Flavin-dependent antioxidant properties of a new series of meso-N,N’-dialkyl-imidazolium substituted manganese(III) porphyrins (2004) Biochem. Pharmacol., 67, pp. 77-85
  • Quijano, C., Trujillo, M., Castro, L., Trostchansky, A., Interplay between oxidant species and energy metabolism (2016) Redox Biol., 8, pp. 28-42
  • Radi, R., Cassina, A., Hodara, R., Quijano, C., Castro, L., Peroxynitrite reactions and formation in mitochondria (2002) Free Radic. Biol. Med., 33, pp. 1451-1464
  • Hsu, J.L., Hsieh, Y., Tu, C., O'Connor, D., Nick, H.S., Silverman, D.N., Catalytic properties of human manganese superoxide dismutase (1996) J. Biol. Chem., 271, pp. 17687-17691
  • Hattori, F., Murayama, N., Noshita, T., Oikawa, S., Mitochondrial Peroxiredoxin-3 Protects Hippocampal Neurons from Excitotoxic Injury in Vivo (2003) J. Neurochem., 86, pp. 860-868
  • Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., Radi, R., Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation (2007) Arch. Biochem. Biophys., 467, pp. 95-106
  • Castro, L., Demicheli, V., Tortora, V., Radi, R., Mitochondrial protein tyrosine nitration (2011) Free Radic. Res., 45, pp. 37-52
  • Poderoso, J.J., Carreras, M.C., Lisdero, C., Riobo, N., Schopfer, F., Boveris, A., Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles (1996) Arch. Biochem. Biophys., 328, pp. 85-92
  • Radi, R., Rodriguez, M., Castro, L., Telleri, R., Inhibition of mitochondrial electron transport by peroxynitrite (1994) Arch. Biochem. Biophys., 308, pp. 89-95
  • de Cavanagh, E.M., Inserra, F., Ferder, M., Ferder, L., From mitochondria to disease: role of the renin-angiotensin system (2007) Am. J. Nephrol., 27, pp. 545-553
  • Federico, A., Cardaioli, E., Da Pozzo, P., Formichi, P., Gallus, G.N., Radi, E., Mitochondria, oxidative stress and neurodegeneration (2012) J. Neurol. Sci., 322, pp. 254-262
  • Ghafourifar, P., Schenk, U., Klein, S.D., Richter, C., Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation (1999) J. Biol. Chem., 274, pp. 31185-31188
  • Newsholme, P., Gaudel, C., Krause, M., Mitochondria and diabetes. An intriguing pathogenetic role (2012) Adv. Exp. Med. Biol., 942, pp. 235-247
  • Nicolson, G.L., Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane peroxidation and restore mitochondrial function (2007) J. Cell. Biochem., 100, pp. 1352-1369
  • Szabo, C., Ischiropoulos, H., Radi, R., Peroxynitrite: biochemistry, pathophysiology and development of therapeutics (2007) Nat. Rev. Drug Discov., 6, pp. 662-680
  • Cassina, P., Cassina, A., Pehar, M., Castellanos, R., Gandelman, M., de Leon, A., Robinson, K.M., Radi, R., Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants (2008) J. Neurosci., 28, pp. 4115-4122
  • Hachmeister, J.E., Valluru, L., Bao, F., Liu, D., Mn (III) tetrakis (4-benzoic acid) porphyrin administered into the intrathecal space reduces oxidative damage and neuron death after spinal cord injury: a comparison with methylprednisolone (2006) J. Neurotrauma, 23, pp. 1766-1778
  • Nin, N., Cassina, A., Boggia, J., Alfonso, E., Botti, H., Peluffo, G., Trostchansky, A., Hurtado, F.J., Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition (2004) Intensive Care Med., 30, pp. 2271-2278
  • Batinic-Haberle, I., Tovmasyan, A., Spasojevic, I., An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins–From superoxide dismutation to H2O2-driven pathways (2015) Redox Biol., 5, pp. 43-65
  • Batinic-Haberle, I., Spasojevic, I., Complex chemistry and biology of redox-active compounds, commonly known as SOD mimics, affect their therapeutic effects (2014) Antioxid. Redox Signal., 20, pp. 2323-2325
  • Batinic-Haberle, I., Rajic, Z., Tovmasyan, A., Reboucas, J.S., Ye, X., Leong, K.W., Dewhirst, M.W., Spasojevic, I., Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics (2011) Free Radic. Biol. Med., 51, pp. 1035-1053
  • Batinic-Haberle, I., Reboucas, J.S., Spasojevic, I., Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential (2010) Antioxid. Redox Signal., 13, pp. 877-918
  • Batinic-Haberle, I., Spasojevic, I., Stevens, R.D., Hambright, P., Fridovich, I., Manganese (III) meso-tetrakis (ortho-N-alkylpyridyl) porphyrins. Synthesis, characterization, and catalysis of O 2− dismutation (2002) J. Chem. Soc. Dalton Trans., pp. 2689-2696
  • Cline, J.M., Dugan, G., Bourland, J.D., Perry, D.L., Stitzel, J.D., Weaver, A.A., Jiang, C., Vujaskovic, Z., Post-irradiation treatment with a superoxide dismutase mimic, MnTnHex-2-PyP(5+), mitigates radiation injury in the lungs of non-human primates after whole-thorax exposure to ionizing radiation (2018) Antioxidants, 7 (3), pp. 40-57
  • Sheng, H., Spasojevic, I., Tse, H.M., Jung, J.Y., Hong, J., Zhang, Z., Piganelli, J.D., Warner, D.S., Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage (2011) J. Pharmacol. Exp. Ther., 338, pp. 906-916
  • Rajic, Z., Tovmasyan, A., Spasojevic, I., Sheng, H., Lu, M., Li, A.M., Gralla, E.B., Batinic-Haberle, I., A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity (2012) Free Radic. Biol. Med., 52, pp. 1828-1834
  • Rajic, Z., Tovmasyan, A., de Santana, O.L., Peixoto, I.N., Spasojevic, I., do Monte, S.A., Ventura, E., Batinic-Haberle, I., Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP(5+), and its alkoxyalkyl analogues (2017) J. Inorg. Biochem., 169, pp. 50-60
  • Zhao, Y., Carroll, D.W., You, Y., Chaiswing, L., Wen, R., Batinic-Haberle, I., Bondada, S., St Clair, D.K., A novel redox regulator, MnTnBuOE-2-PyP(5+), enhances normal hematopoietic stem/progenitor cell function (2017) Redox Biol., 12, pp. 129-138
  • Bakthavatchalu, V., Dey, S., Xu, Y., Noel, T., Jungsuwadee, P., Holley, A.K., Dhar, S.K., St Clair, D.K., Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polgamma against UV-induced inactivation (2012) Oncogene, 31, pp. 2129-2139
  • Batinic-Haberle, I., Tovmasyan, A., Roberts, E.R., Vujaskovic, Z., Leong, K.W., Spasojevic, I., SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways (2014) Antioxid. Redox Signal., 20, pp. 2372-2415
  • Miriyala, S., Thippakorn, C., Chaiswing, L., Xu, Y., Noel, T., Tovmasyan, A., Batinic-Haberle, I., St Clair, D.K., Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling (2016) Free Radic. Biol. Med., 91, pp. 68-80
  • Batinic-Haberle, I., Cuzzocrea, S., Reboucas, J.S., Ferrer-Sueta, G., Mazzon, E., Di Paola, R., Radi, R., Salvemini, D., Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy (2009) Free Radic. Biol. Med., 46, pp. 192-201
  • Celic, T., Spanjol, J., Bobinac, M., Tovmasyan, A., Vukelic, I., Reboucas, J.S., Batinic-Haberle, I., Bobinac, D., Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-kappaB pathways (2014) Free Radic. Res., 48, pp. 1426-1442
  • Gauter-Fleckenstein, B., Fleckenstein, K., Owzar, K., Jiang, C., Batinic-Haberle, I., Vujaskovic, Z., Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection (2008) Free Radic. Biol. Med., 44, pp. 982-989
  • Gauter-Fleckenstein, B., Reboucas, J.S., Fleckenstein, K., Tovmasyan, A., Owzar, K., Jiang, C., Batinic-Haberle, I., Vujaskovic, Z., Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+) (2014) Redox Biol., 2, pp. 400-410
  • Mackensen, G.B., Patel, M., Sheng, H., Calvi, C.L., Batinic-Haberle, I., Day, B.J., Liang, L.P., Warner, D.S., Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant (2001) J. Neurosci., 21, pp. 4582-4592
  • Miriyala, S., Spasojevic, I., Tovmasyan, A., Salvemini, D., Vujaskovic, Z., St Clair, D., Batinic-Haberle, I., Manganese superoxide dismutase, MnSOD and its mimics (2011) Biochim. Biophys. Acta, 1822, pp. 794-814
  • Saba, H., Batinic-Haberle, I., Munusamy, S., Mitchell, T., Lichti, C., Megyesi, J., MacMillan-Crow, L.A., Manganese porphyrin reduces renal injury and mitochondrial damage during ischemia/reperfusion (2007) Free Radic. Biol. Med., 42, pp. 1571-1578
  • Weitzel, D.H., Tovmasyan, A., Ashcraft, K.A., Rajic, Z., Weitner, T., Liu, C., Li, W., Dewhirst, M.W., Radioprotection of the brain white matter by Mn(III) n-Butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5 (2015) Mol. Cancer Ther., 14, pp. 70-79
  • Spasojevic, I., Chen, Y., Noel, T.J., Fan, P., Zhang, L., Reboucas, J.S., St Clair, D.K., Batinic-Haberle, I., Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP(5+), in plasma and major organs of B6C3F1 mice (2008) Free Radic. Biol. Med., 45, pp. 943-949
  • Spasojevic, I., Chen, Y., Noel, T.J., Yu, Y., Cole, M.P., Zhang, L., Zhao, Y., Batinic-Haberle, I., Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria (2007) Free Radic. Biol. Med., 42, pp. 1193-1200
  • Spasojevic, I., Kos, I., Benov, L.T., Rajic, Z., Fels, D., Dedeugd, C., Ye, X., Batinic-Haberle, I., Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site (2011) Free Radic Res., 45, pp. 188-200
  • Carlioz, A., Touati, D., Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? (1986) Embo J., 5, pp. 623-630
  • Munroe, W., Kingsley, C., Durazo, A., Gralla, E.B., Imlay, J.A., Srinivasan, C., Valentine, J.S., Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes (2007) J. Inorg. Biochem., 101, pp. 1875-1882
  • Okado-Matsumoto, A., Batinic-Haberle, I., Fridovich, I., Complementation of SOD-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity (2004) Free Radic. Biol. Med., 37, pp. 401-410
  • Tovmasyan, A., Reboucas, J.S., Benov, L., Simple biological systems for assessing the activity of superoxide dismutase mimics (2013) Antioxid. Redox Signal., 20, pp. 2416-2436
  • Tovmasyan, A.G., Rajic, Z., Spasojevic, I., Reboucas, J.S., Chen, X., Salvemini, D., Sheng, H., Batinic-Haberle, I., Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins (2011) Dalton Trans., 40, pp. 4111-4121
  • Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tortora, V., Tomasina, F., Murgida, D.H., Multifunctional cytochrome c: learning new tricks from an old dog (2017) Chem. Rev., 117, pp. 13382-13460
  • Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., Murgida, D.H., Active site structure and peroxidase activity of oxidatively modified cytochrome c species in complexes with cardiolipin (2015) Biochemistry, 54, pp. 7491-7504
  • Ohta, T., Liu, J., Naruta, Y., Resonance Raman characterization of mononuclear heme-peroxo intermediate models (2013) Coord. Chem. Rev., 257, pp. 407-413
  • Spiro, T.G., Soldatova, A.V., Balakrishnan, G., CO, NO and O2 as vibrational probes of heme protein interactions (2013) Coord. Chem. Rev., 257, pp. 511-527
  • Arellano, L.M., Barrejon, M., Gobeze, H.B., Gomez-Escalonilla, M.J., Fierro, J.L.G., D'Souza, F., Langa, F., Charge stabilizing tris(triphenylamine)-zinc porphyrin-carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies (2017) Nanoscale, 9, pp. 7551-7558
  • Fernandez, C.C., Spedalieri, C., Murgida, D.H., Williams, F.J., Surface influence on the metalation of porphyrins at the solid–liquid interface (2017) J. Phys. Chem. C, 121, pp. 21324-21332
  • Romelt, C., Ye, S., Bill, E., Weyhermuller, T., van Gastel, M., Neese, F., Electronic structure and spin multiplicity of iron tetraphenylporphyrins in their reduced states as determined by a combination of resonance Raman spectroscopy and quantum chemistry (2018) Inorg. Chem., 57, pp. 2141-2148
  • Schick, G.A., Bocian, D.F., Resonance Raman studies of hydroporphyrins and chlorophylls (1987) Biochim. Biophys. Acta, 895, pp. 127-154
  • Batinic-Haberle, I., Spasojevic, I., Tse, H.M., Tovmasyan, A., Rajic, Z., St Clair, D.K., Vujaskovic, Z., Piganelli, J.D., Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities (2012) Amino Acids, 42, pp. 95-113
  • Rios, N., Piacenza, L., Trujillo, M., Martinez, A., Demicheli, V., Prolo, C., Alvarez, M.N., Radi, R., Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate (2016) Free Radic. Biol. Med., 101, pp. 284-295
  • Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide (1991) J. Biol. Chem., 266, pp. 4244-4250
  • Saha, A., Goldstein, S., Cabelli, D., Czapski, G., Determination of optimal conditions for synthesis of peroxynitrite by mixing acidified hydrogen peroxide with nitrite (1998) Free Radic. Biol. Med., 24, pp. 653-659
  • Hughes, M.N., Nicklin, H.G., The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid (1968) J. Chem. Soc., A, pp. 450-456
  • Quijano, C., Castro, L., Peluffo, G., Valez, V., Radi, R., Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite (2007) Am. J. Physiol. Heart Circ. Physiol., 293, pp. H3404-H3414
  • Royall, J.A., Ischiropoulos, H., Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells (1993) Arch. Biochem. Biophys., 302, pp. 348-355
  • Feelisch, M., Ostrowski, J., Noack, E., On the mechanism of NO release from sydnonimines (1989) J. Cardiovasc. Pharmacol., 14, pp. S13-S22
  • Swintek, A.U., Christoph, S., Petrat, F., de Groot, H., Kirsch, M., Cell type-dependent release of nitric oxide and/or reactive nitrogenoxide species from intracellular SIN-1: effects on cellular NAD(P)H (2004) Biol. Chem., 385, pp. 639-648
  • Fiuza, B., Subelzu, N., Calcerrada, P., Straliotto, M.R., Piacenza, L., Cassina, A., Rocha, J.B., Peluffo, G., Impact of SIN-1-derived peroxynitrite flux on endothelial cell redox homeostasis and bioenergetics: protective role of diphenyl diselenide via induction of peroxiredoxins (2015) Free Radic. Res., 49, pp. 122-132
  • Cassina, A., Radi, R., Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport (1996) Arch. Biochem. Biophys., 328, pp. 309-316
  • Dranka, B.P., Hill, B.G., Darley-Usmar, V.M., Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species (2010) Free Radic. Biol. Med., 48, pp. 905-914
  • Ferrick, D.A., Neilson, A., Beeson, C., Advances in measuring cellular bioenergetics using extracellular flux (2008) Drug Discov. Today, 13, pp. 268-274
  • Gerencser, A.A., Neilson, A., Choi, S.W., Edman, U., Yadava, N., Oh, R.J., Ferrick, D.A., Brand, M.D., Quantitative microplate-based respirometry with correction for oxygen diffusion (2009) Anal. Chem., 81, pp. 6868-6878
  • Reers, M., Smith, T.W., Chen, L.B., J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential (1991) Biochemistry, 30, pp. 4480-4486
  • Blom, N., Odo, J., Nakamoto, K., Strommen, D.P., Resonance Raman studies of metal tetrakis(4-N-methylpyridyl)porphine: band assignments, structure-sensitive bands, and species equilibria (1986) J. Phys. Chem., 90, pp. 2847-2852
  • Burke, J.M., Kincaid, J.R., Peters, S., Gagne, R.R., Collman, J.P., Spiro, T.G., Structure-sensitive resonance Raman bands of tetraphenyl and “picket fence” porphyrin-iron complexes, including an oxyhemoglobin analog (1978) J. Am. Chem. Soc., 100, pp. 6083-6088
  • Spiro, T.G., Resonance Raman spectra of hemoproteins (1978) Methods Enzymol., 54, pp. 233-249
  • Spiro, T.G., Burke, J.M., Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogues (1976) J. Am. Chem. Soc., 98, pp. 5482-5489
  • Odo, J., Mifune, M., Iwado, A., Karasudani, T., Hasimoto, H., Motohashi, N., Tanaka, Y., Saito, Y., Resonance Raman spectra of manganese-porphyrins on ion-exchange resins exhibiting uricase-like catalytic activity (1991) Anal. Sci., 7, pp. 555-559
  • Spasojevic, I., Batinic-Haberle, I., Fridovich, I., Nitrosylation of manganese(II) tetrakis(N-ethylpyridinium-2-yl)porphyrin: a simple and sensitive spectrophotometric assay for nitric oxide (2000) Nitric Oxide, 4, pp. 526-533
  • Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., Beckman, J.S., Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide (1992) Chem. Res. Toxicol., 5, pp. 834-842
  • Brown, G.C., Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase (2001) Biochim. Biophys. Acta, 1504, pp. 46-57
  • Turrens, J.F., Mitochondrial formation of reactive oxygen species (2003) J. Physiol., 552, pp. 335-344
  • Brito, P.M., Mariano, A., Almeida, L.M., Dinis, T.C., Resveratrol affords protection against peroxynitrite-mediated endothelial cell death: a role for intracellular glutathione (2006) Chem. Biol. Interact., 164, pp. 157-166
  • Zhang, X., Chen, J., Graham, S.H., Du, L., Kochanek, P.M., Draviam, R., Guo, F., Clark, R.S., Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite (2002) J. Neurochem., 82, pp. 181-191
  • de Bem, A.F., Fiuza, B., Calcerrada, P., Brito, P.M., Peluffo, G., Dinis, T.C., Trujillo, M., Almeida, L.M., Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: a comparison with ebselen (2013) Nitric Oxide, 31, pp. 20-30
  • Ferrer-Sueta, G., Radi, R., Chemical biology of peroxynitrite: kinetics, diffusion, and radicals (2009) ACS Chem. Biol., 4, pp. 161-177
  • Valez, V., Cassina, A., Batinic-Haberle, I., Kalyanaraman, B., Ferrer-Sueta, G., Radi, R., Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins (2013) Arch. Biochem. Biophys., 529, pp. 45-54

Citas:

---------- APA ----------
Carballal, S., Valez, V., Alvarez-Paggi, D., Tovmasyan, A., Batinic-Haberle, I., Ferrer-Sueta, G., Murgida, D.H.,..., Radi, R. (2018) . Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite. Free Radical Biology and Medicine, 126, 379-392.
http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.023
---------- CHICAGO ----------
Carballal, S., Valez, V., Alvarez-Paggi, D., Tovmasyan, A., Batinic-Haberle, I., Ferrer-Sueta, G., et al. "Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite" . Free Radical Biology and Medicine 126 (2018) : 379-392.
http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.023
---------- MLA ----------
Carballal, S., Valez, V., Alvarez-Paggi, D., Tovmasyan, A., Batinic-Haberle, I., Ferrer-Sueta, G., et al. "Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite" . Free Radical Biology and Medicine, vol. 126, 2018, pp. 379-392.
http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.023
---------- VANCOUVER ----------
Carballal, S., Valez, V., Alvarez-Paggi, D., Tovmasyan, A., Batinic-Haberle, I., Ferrer-Sueta, G., et al. Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite. Free Radic. Biol. Med. 2018;126:379-392.
http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.023