Artículo

Reyes, A.M.; Vazquez, D.S.; Zeida, A.; Hugo, M.; Piñeyro, M.D.; De Armas, M.I.; Estrin, D.; Radi, R.; Santos, J.; Trujillo, M. "PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase" (2016) Free Radical Biology and Medicine. 101:249-260
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus, the characterization of the bacterial antioxidant systems could facilitate novel drug developments. In this work, we characterized the product of the gene Rv1608c from M. tuberculosis, which according to sequence homology had been annotated as a putative peroxiredoxin of the peroxiredoxin Q subfamily (PrxQ B from M. tuberculosis or MtPrxQ B). The protein has been reported to be essential for M. tuberculosis growth in cholesterol-rich medium. We demonstrated the M. tuberculosis thioredoxin B/C-dependent peroxidase activity of MtPrxQ B, which acted as a two-cysteine peroxiredoxin that could function, although less efficiently, using a one-cysteine mechanism. Through steady-state and competition kinetic analysis, we proved that the net forward rate constant of MtPrxQ B reaction was 3 orders of magnitude faster for fatty acid hydroperoxides than for hydrogen peroxide (3×106 vs 6×103 M− 1 s− 1, respectively), while the rate constant of peroxynitrite reduction was (0.6−1.4) ×106 M− 1 s− 1 at pH 7.4. The enzyme lacked activity towards cholesterol hydroperoxides solubilized in sodium deoxycholate. Both thioredoxin B and C rapidly reduced the oxidized form of MtPrxQ B, with rates constants of 0.5×106 and 1×106 M− 1 s− 1, respectively. Our data indicated that MtPrxQ B is monomeric in solution both under reduced and oxidized states. In spite of the similar hydrodynamic behavior the reduced and oxidized forms of the protein showed important structural differences that were reflected in the protein circular dichroism spectra. © 2016 Elsevier Inc.

Registro:

Documento: Artículo
Título:PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase
Autor:Reyes, A.M.; Vazquez, D.S.; Zeida, A.; Hugo, M.; Piñeyro, M.D.; De Armas, M.I.; Estrin, D.; Radi, R.; Santos, J.; Trujillo, M.
Filiación:Departamento de Bioquímica, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay
Center for Free Radical and Biomedical Research, Universidad de la RepúblicaMontevideo, Uruguay
Instituto de Química y Físicoquímica Biológicas “Prof. Alejandro C. Paladini” (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Unidad de Biología Molecular-Institut Pasteur MontevideoMontevideo, Uruguay
Palabras clave:Fatty acid hydroperoxides; Mycobacterium tuberculosis; Peroxidatic and resolving cysteine; Peroxiredoxin; Peroxynitrite; Thiol-dependent peroxidase; Thioredoxin; deoxycholate sodium; oxidoreductase; peroxiredoxin Q B; peroxynitrite; reducing agent; thioredoxin; unclassified drug; aldehyde dehydrogenase; bacterial protein; fatty acid; fatty acid reductase; hydrogen peroxide; peroxiredoxin; protein binding; recombinant protein; thioredoxin; Article; bacterial growth; catalysis; circular dichroism; conformational transition; enzyme activity; enzyme conformation; hydrodynamics; hydrogen bond; hydrophobicity; molecular dynamics; Mycobacterium tuberculosis; nonhuman; observed rate constant; oxidation; oxidation reduction state; priority journal; protein expression; protein secondary structure; protein structure; protein tertiary structure; reduction; sequence homology; steady state; alpha helix; beta sheet; binding site; chemistry; enzyme specificity; enzymology; Escherichia coli; gene expression; gene vector; genetics; kinetics; metabolism; molecular cloning; Mycobacterium tuberculosis; oxidation reduction reaction; protein domain; protein motif; Aldehyde Oxidoreductases; Amino Acid Motifs; Bacterial Proteins; Binding Sites; Cloning, Molecular; Escherichia coli; Fatty Acids; Gene Expression; Genetic Vectors; Hydrogen Peroxide; Kinetics; Molecular Dynamics Simulation; Mycobacterium tuberculosis; Oxidation-Reduction; Peroxiredoxins; Protein Binding; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Protein Interaction Domains and Motifs; Recombinant Proteins; Substrate Specificity; Thioredoxins
Año:2016
Volumen:101
Página de inicio:249
Página de fin:260
DOI: http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.005
Título revista:Free Radical Biology and Medicine
Título revista abreviado:Free Radic. Biol. Med.
ISSN:08915849
CODEN:FRBME
CAS:deoxycholate sodium, 302-95-4; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; thioredoxin, 52500-60-4; aldehyde dehydrogenase, 37353-37-0, 9028-86-8; hydrogen peroxide, 7722-84-1; peroxiredoxin, 207137-51-7; Aldehyde Oxidoreductases; Bacterial Proteins; fatty acid reductase; Fatty Acids; Hydrogen Peroxide; Peroxiredoxins; Recombinant Proteins; Thioredoxins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08915849_v101_n_p249_Reyes

Referencias:

  • Leibert, E., Danckers, M., Rom, W.N., New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline (2014) Ther. Clin. Risk Manag., 10, pp. 597-602
  • Nathan, C., Shiloh, M.U., Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 8841-8848
  • Shiloh, M.U., Nathan, C.F., Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria (2000) Curr. Opin. Microbiol., 3, pp. 35-42
  • Hugo, M.R.R., Trujillo, M., Thiol-dependent peroxidases in Mycobacterium tuberculosis antioxidant defense (2011) Understanding Tuberculosis – Deciphering the Secret Life of the Bacilli, pp. 293-316. , P.-J. Cardona InTech Croatia
  • Alvarez, M.N., Peluffo, G., Piacenza, L., Radi, R., Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity (2011) J. Biol. Chem., 286, pp. 6627-6640
  • Cole, S.T., Barrell, B.G., Analysis of the genome of Mycobacterium tuberculosis H37Rv (1998) Novartis Found. Symp. 217, pp. 160-172. , (discussion 172-167)
  • Rhee, S.G., Woo, H.A., Kil, I.S., Bae, S.H., Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides (2012) J. Biol. Chem., 287, pp. 4403-4410
  • Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohe, L., Radi, R., Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite (2007) Subcell. Biochem., 44, pp. 83-113
  • Lew, J.M., Kapopoulou, A., Jones, L.M., Cole, S.T., TubercuList-−10 years after (2011) Tuberculosis, 91, pp. 1-7
  • Perkins, A., Gretes, M.C., Nelson, K.J., Poole, L.B., Karplus, P.A., Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes (2012) Biochemistry, 51, pp. 7638-7650
  • Gu, S., Chen, J., Dobos, K.M., Bradbury, E.M., Belisle, J.T., Chen, X., Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain (2003) Mol. Cell Proteom., 2, pp. 1284-1296
  • Mawuenyega, K.G., Forst, C.V., Dobos, K.M., Belisle, J.T., Chen, J., Bradbury, E.M., Bradbury, A.R., Chen, X., Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling (2005) Mol. Biol. Cell, 16, pp. 396-404
  • Malen, H., Pathak, S., Softeland, T., de Souza, G.A., Wiker, H.G., Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv (2010) BMC Microbiol., 10, p. 132
  • de Souza, G.A., Arntzen, M.O., Fortuin, S., Schurch, A.C., Malen, H., McEvoy, C.R., van Soolingen, D., Wiker, H.G., Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database (2011) Mol. Cell Proteom., 10 (M110), p. 002527
  • Griffin, J.E., Gawronski, J.D., Dejesus, M.A., Ioerger, T.R., Akerley, B.J., Sassetti, C.M., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism (2011) PLoS Pathog., 7, p. e1002251
  • Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M.H., Hara, H., Anderton, M.C., Sim, E., Eltis, L.D., A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 1947-1952
  • Poole, L.B., The catalytic mechanism of peroxiredoxins (2007) Subcell. Biochem., 44, pp. 61-81
  • Clarke, D.J., Ortega, X.P., Mackay, C.L., Valvano, M.A., Govan, J.R., Campopiano, D.J., Langridge-Smith, P., Brown, A.R., Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity (2010) Biochemistry, 49, pp. 1319-1330
  • Horta, B.B., de Oliveira, M.A., Discola, K.F., Cussiol, J.R., Netto, L.E., Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity (2010) J. Biol. Chem., 285, pp. 16051-16065
  • Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.N., De Fay, E., Hirasawa, M., Duplessis, S., Jacquot, J.P., Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense (2004) Plant Physiol., 134, pp. 1027-1038
  • Reeves, S.A., Parsonage, D., Nelson, K.J., Poole, L.B., Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin (2011) Biochemistry, 50, pp. 8970-8981
  • Cha, M.K., Hong, S.K., Kim, I.H., Four thiol peroxidases contain a conserved GCT catalytic motif and act as a versatile array of lipid peroxidases in Anabaena sp. PCC7120 (2007) Free Radic. Biol. Med., 42, pp. 1736-1748
  • Wang, G., Olczak, A.A., Walton, J.P., Maier, R.J., Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization (2005) Infect. Immun., 73, pp. 378-384
  • Jeong, W., Cha, M.K., Kim, I.H., Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family (2000) J. Biol. Chem., 275, pp. 2924-2930
  • Zielonka, J., Sikora, A., Joseph, J., Kalyanaraman, B., Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe (2010) J. Biol. Chem., 285, pp. 14210-14216
  • Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., Freeman, B.A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 1620-1624
  • Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide (1991) J. Biol. Chem., 266, pp. 4244-4250
  • Alvarez, B., Demicheli, V., Duran, R., Trujillo, M., Cervenansky, C., Freeman, B.A., Radi, R., Inactivation of human Cu,Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical (2004) Free Radic. Biol. Med., 37, pp. 813-822
  • Mitra, S., Dungan, S.R., Cholesterol solubilization in aqueous micellar solutions of quillaja saponin, bile salts, or nonionic surfactants (2001) J. Agric. Food Chem., 49, pp. 384-394
  • Jaeger, T., Budde, H., Flohe, L., Menge, U., Singh, M., Trujillo, M., Radi, R., Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis (2004) Arch. Biochem. Biophys., 423, pp. 182-191
  • Claiborne, A., Miller, H., Parsonage, D., Ross, R.P., Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation (1993) FASEB J., 7, pp. 1483-1490
  • Yin, H., Porter, N.A., Specificity of the ferrous oxidation of xylenol orange assay: analysis of autoxidation products of cholesteryl arachidonate (2003) Anal. Biochem., 313, pp. 319-326
  • Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., How to measure and predict the molar absorption coefficient of a protein (1995) Protein Sci., 4, pp. 2411-2423
  • Ellman, G.L., Tissue sulfhydryl groups (1959) Arch. Biochem. Biophys., 82, pp. 70-77
  • Schonbaum, G.R., Lo, S., Interaction of peroxidases with aromatic peracids and alkyl peroxides. Product analysis (1972) J. Biol. Chem., 247, pp. 3353-3360
  • Holmgren, A., Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide (1995) Structure, 3, pp. 239-243
  • Trujillo, M., Mauri, P., Benazzi, L., Comini, M., De Palma, A., Flohe, L., Radi, R., Jaeger, T., The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin (2006) J. Biol. Chem., 281, pp. 20555-20566
  • Reyes, A.M., Hugo, M., Trostchansky, A., Capece, L., Radi, R., Trujillo, M., Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation (2011) Free Radic. Biol. Med., 51, pp. 464-473
  • Bou, R., Codony, R., Tres, A., Decker, E.A., Guardiola, F., Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method's performance (2008) Anal. Biochem., 377, pp. 1-15
  • Nelson, K.J., Parsonage, D., Measurement of peroxiredoxin activity (2011) Curr. Protoc. Toxicol., , Chapter 7, Unit7 10
  • Sermon, B.A., Eccleston, J.F., Skinner, R.H., Lowe, P.N., Mechanism of inhibition by arachidonic acid of the catalytic activity of Ras GTPase-activating proteins (1996) J. Biol. Chem., 271, pp. 1566-1572
  • Dalziel, K., Initial stady state velocities in the evaluation of enzyme-substrate reaction mechanisms (1957) Acta Chem. Scand., 11, pp. 1706-1723
  • Radi, R., Kinetic analysis of reactivity of peroxynitrite with biomolecules (1996) Methods Enzymol., 269, pp. 354-366
  • Trujillo, M., Ferrer-Sueta, G., Radi, R., Kinetic studies on peroxynitrite reduction by peroxiredoxins (2008) Methods Enzymol., 441, pp. 173-196
  • Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E., Augusto, O., Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics (2007) Free Radic. Biol. Med., 42, pp. 326-334
  • Hayashi, Y., Yamazaki, I., The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C (1979) J. Biol. Chem., 254, pp. 9101-9106
  • Floris, R., Piersma, S.R., Yang, G., Jones, P., Wever, R., Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase (1993) Eur. J. Biochem., 215, pp. 767-775
  • Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., Denicola, A., The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2 (2009) Arch. Biochem. Biophys., 484, pp. 146-154
  • Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E., Alvarez, B., Trujillo, M., Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics (2009) Biochemistry, 48, pp. 9416-9426
  • Demicheli, V., Moreno, D.M., Jara, G.E., Lima, A., Carballal, S., Rios, N., Batthyany, C., Radi, R., Mechanism of the reaction of human manganese superoxide dismutase with peroxynitrite: nitrationnitration of critical tyrosine 34 (2016) Biochemistry, 55, pp. 3403-3417
  • Perkins, A., Poole, L.B., Karplus, P.A., Tuning of peroxiredoxin catalysis for various physiological roles (2014) Biochemistry, 53, pp. 7693-7705
  • Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., Ferguson, D., Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14 (33-38), pp. 27-38
  • Goldman, R., Stoyanovsky, D.A., Day, B.W., Kagan, V.E., Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin (1995) Biochemistry, 34, pp. 4765-4772
  • Clarke, D.J., Mackay, C.L., Campopiano, D.J., Langridge-Smith, P., Brown, A.R., Interrogating the molecular details of the peroxiredoxin activity of the Escherichia coli bacterioferritin comigratory protein using high-resolution mass spectrometry (2009) Biochemistry, 48, pp. 3904-3914
  • Liao, S.J., Yang, C.Y., Chin, K.H., Wang, A.H., Chou, S.H., Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures (2009) J. Mol. Biol., 390, pp. 951-966
  • Wakita, M., Masuda, S., Motohashi, K., Hisabori, T., Ohta, H., Takamiya, K., The significance of type II and PrxQ peroxiredoxins for antioxidative stress response in the purple bacterium Rhodobacter sphaeroides (2007) J. Biol. Chem., 282, pp. 27792-27801
  • Limauro, D., Pedone, E., Galdi, I., Bartolucci, S., Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: characterization of Bcp1, Bcp3 and Bcp4 (2008) FEBS J., 275, pp. 2067-2077
  • Dolman, D., Newell, G.A., Thurlow, M.D., A kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide (1975) Can. J. Biochem., 53, pp. 495-501
  • Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., Beckman, J.S., Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide (1992) Chem. Res. Toxicol., 5, pp. 834-842
  • Wood, Z.A., Poole, L.B., Hantgan, R.R., Karplus, P.A., Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins (2002) Biochemistry, 41, pp. 5493-5504
  • Rath, A., Davidson, A.R., Deber, C.M., The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition (2005) Biopolymers, 80, pp. 179-185
  • Perkins, A., Parsonage, D., Nelson, K.J., Ogba, O.M., Cheong, P.H., Poole, L.B., Karplus, P.A., Peroxiredoxin catalysis at atomic resolution (2016) Structure, 24, pp. 1668-1678
  • Mongkolsuk, S., Praituan, W., Loprasert, S., Fuangthong, M., Chamnongpol, S., Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli (1998) J. Bacteriol., 180, pp. 2636-2643
  • Si, M., Wang, J., Xiao, X., Guan, J., Zhang, Y., Ding, W., Chaudhry, M.T., Shen, X., Ohr protects Corynebacterium glutamicum against organic hydroperoxide induced oxidative stress (2015) PLoS One, 10, p. e0131634
  • Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., Gonzalez Flecha, F.L., Trujillo, M., Molecular basis of hydroperoxide specificity in peroxiredoxins: the case of AhpE from Mycobacterium tuberculosis (2015) Biochemistry, 54, pp. 7237-7247
  • Pedone, E., Limauro, D., D'Alterio, R., Rossi, M., Bartolucci, S., Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus (2006) FEBS J., 273, pp. 5407-5420
  • Pedone, E., Limauro, D., Bartolucci, S., The machinery for oxidative protein folding in thermophiles (2008) Antioxid. Redox Signal., 10, pp. 157-169
  • Jain, M., Petzold, C.J., Schelle, M.W., Leavell, M.D., Mougous, J.D., Bertozzi, C.R., Leary, J.A., Cox, J.S., Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 5133-5138
  • Griffin, J.E., Pandey, A.K., Gilmore, S.A., Mizrahi, V., McKinney, J.D., Bertozzi, C.R., Sassetti, C.M., Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations (2012) Chem. Biol., 19, pp. 218-227
  • Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schottler, M.A., Holtkamp, V., Dietz, K.J., Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis (2006) Plant J., 45, pp. 968-981
  • Parsonage, D., Karplus, P.A., Poole, L.B., Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 8209-8214
  • Bryk, R., Griffin, P., Nathan, C., Peroxynitrite reductase activity of bacterial peroxiredoxins (2000) Nature, 407, pp. 211-215
  • Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., Nathan, C., Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein (2002) Science, 295, pp. 1073-1077
  • Hugo, M., Van Laer, K., Reyes, A.M., Vertommen, D., Messens, J., Radi, R., Trujillo, M., Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis (2014) J. Biol. Chem., 289, pp. 5228-5239
  • Kumar, A., Balakrishna, A.M., Nartey, W., Manimekalai, M.S., Gruber, G., Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol (2016) Free Radic. Biol. Med., 97, pp. 588-601
  • Mendes, P., GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems (1993) Comput. Appl. Biosci., 9, pp. 563-571

Citas:

---------- APA ----------
Reyes, A.M., Vazquez, D.S., Zeida, A., Hugo, M., Piñeyro, M.D., De Armas, M.I., Estrin, D.,..., Trujillo, M. (2016) . PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Free Radical Biology and Medicine, 101, 249-260.
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.005
---------- CHICAGO ----------
Reyes, A.M., Vazquez, D.S., Zeida, A., Hugo, M., Piñeyro, M.D., De Armas, M.I., et al. "PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase" . Free Radical Biology and Medicine 101 (2016) : 249-260.
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.005
---------- MLA ----------
Reyes, A.M., Vazquez, D.S., Zeida, A., Hugo, M., Piñeyro, M.D., De Armas, M.I., et al. "PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase" . Free Radical Biology and Medicine, vol. 101, 2016, pp. 249-260.
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.005
---------- VANCOUVER ----------
Reyes, A.M., Vazquez, D.S., Zeida, A., Hugo, M., Piñeyro, M.D., De Armas, M.I., et al. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Free Radic. Biol. Med. 2016;101:249-260.
http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.005