Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio–temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves. © 2018, Cold Spring Harbor Laboratory Press. All rights reserved.


Documento: Artículo
Título:The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription
Autor:Mikhaylichenko, O.; Bondarenko, V.; Harnett, D.; Schor, I.E.; Males, M.; Viales, R.R.; Furlong, E.E.M.
Filiación:Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, D-69117, Germany
Core Unit Bioinformatics, Berlin Institute of Health, Berlin, 10117, Germany
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
Palabras clave:Developmental enhancers; Embryonic development]; ERNA; NcRNA; Promoters; Spatio; Temporal expression; untranslated RNA; untranslated RNA; animal tissue; Article; controlled study; Drosophila; embryo; embryo development; enhancer region; nonhuman; priority journal; promoter region; RNA transcription; spatiotemporal analysis; animal; biosynthesis; embryo development; embryology; gene expression regulation; genetic transcription; genetics; human; K-562 cell line; Animals; Drosophila; Embryonic Development; Enhancer Elements, Genetic; Gene Expression Regulation, Developmental; Humans; K562 Cells; Promoter Regions, Genetic; RNA, Untranslated; Transcription, Genetic
Página de inicio:42
Página de fin:57
Título revista:Genes and Development
Título revista abreviado:Genes Dev.
CAS:RNA, Untranslated


  • Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B., Sharp, P.A., Promoter directionality is controlled by U1 snRNP and polyadenylation signals (2013) Nature, 499, pp. 360-363
  • Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Suzuki, T., An atlas of active enhancers across human cell types and tissues (2014) Nature, 507, pp. 455-461
  • Andersson, R., Refsing Andersen, P., Valen, E., Core, L.J., Bornholdt, J., Boyd, M., Heick Jensen, T., Sandelin, A., Nuclear stability and transcriptional directionality separate functionally distinct RNA species (2014) Nat Commun, 5, p. 5336
  • Andersson, R., Sandelin, A., Danko, C.G., A unified architecture of transcriptional regulatory elements (2015) Trends Genet, 31, pp. 426-433
  • Archer, T.K., Lefebvre, P., Wolford, R.G., Hager, G.L., Transcription factor loading on the MMTV promoter: A bimodal mechanism for promoter activation (1992) Science, 255, pp. 1573-1576
  • Arenas-Mena, C., The origins of developmental gene regulation (2017) Evol Dev, 19, pp. 96-107
  • Arner, E., Daub, C.O., Vitting-Seerup, K., Andersson, R., Lilje, B., Dra-Blos, F., Lennartsson, A., Vitezic, M., Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells (2015) Science, 347, pp. 1010-1014
  • Arnold, C.D., Gerlach, D., Stelzer, C., Boryn, L.M., Rath, M., Stark, A., Genome-wide quantitative enhancer activity maps identified by STARR-seq (2013) Science, 339, pp. 1074-1077
  • Arnold, C.D., Zabidi, M.A., Pagani, M., Rath, M., Schernhuber, K., Kazmar, T., Stark, A., Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution (2017) Nat Biotechnol, 35, pp. 136-144
  • Bailey, T.L., Machanick, P., Inferring direct DNA binding from ChIP-seq (2012) Nucleic Acids Res, 40
  • Banerji, J., Rusconi, S., Schaffner, W., Expression of a β-globin gene is enhanced by remote SV40 DNA sequences (1981) Cell, 27, pp. 299-308
  • Barolo, S., Carver, L.A., Posakony, J.W., GFP and β-galactosidase transformation vectors for promoter/enhancer analysis in Drosophila (2000) Biotechniques, 29, p. 726
  • Batut, P., Dobin, A., Plessy, C., Carninci, P., Gingeras, T.R., High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression (2012) Genome Res, 23, pp. 169-180
  • Biemar, F., Zinzen, R., Ronshaugen, M., Sementchenko, V., Manak, J.R., Levine, M.S., Spatial regulation of microRNA gene expression in the Drosophila embryo (2005) Proc Natl Acad Sci, 102, pp. 15907-15911
  • Bischof, J., Maeda, R.K., Hediger, M., Karch, F., Basler, K., An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases (2007) Proc Natl Acad Sci, 104, pp. 3312-3317
  • Bonn, S., Zinzen, R.P., Girardot, C., Gustafson, E.H., Perez-Gonzalez, A., Delhomme, N., Ghavi-Helm, Y., Furlong, E.E.M., Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development (2012) Nat Genet, 44, pp. 148-156
  • Bonn, S., Zinzen, R.P., Perez-Gonzalez, A., Riddell, A., Gavin, A.-C., Furlong, E.E.M., Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP (2012) Nat Protoc, 7, pp. 978-994
  • Bose, D.A., Donahue, G., Reinberg, D., Shiekhattar, R., Bonasio, R., Berger, S.L., RNA binding to CBP stimulates histone acetylation and transcription (2017) Cell, 168, pp. 135-149
  • Butler, J.E., Kadonaga, J.T., Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs (2001) Genes Dev, 15, pp. 2515-2519
  • Cannavò, E., Koelling, N., Harnett, D., Garfield, D., Casale, F.P., Ciglar, L., Gustafson, H.E., Degner, J.F., Genetic variants regulating expression levels and iso-form diversity during embryogenesis (2017) Nature, 541, pp. 402-406
  • Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., Semple, C.A.M., Frith, M.C., Genome-wide analysis of mammalian promoter architecture and evolution (2006) Nat Genet, 38, pp. 626-635
  • Chen, R.A.J., Down, T.A., Stempor, P., Chen, Q.B., Egelhofer, T.A., Hillier, L.W., Jeffers, T.E., Ahringer, J., The landscape of RNA polymerase II transcription initiation in C. Elegans reveals promoter and enhancer architectures (2013) Genome Res, 23, pp. 1339-1347
  • Cho, H., Orphanides, G., Sun, X., Yang, X.J., Ogryzko, V., Lees, E., Naka-Tani, Y., Reinberg, D., A human RNA polymerase II complex containing factors that modify chromatin structure (1998) Mol Cell Biol, 18, pp. 5355-5363
  • Core, L.J., Waterfall, J.J., Gilchrist, D.A., Fargo, D.C., Kwak, H., Adelman, K., Lis, J.T., Defining the status of RNA polymerase at promoters (2012) Cell Rep, 2, pp. 1025-1035
  • Core, L.J., Martins, A.L., Danko, C.G., Waters, C.T., Siepel, A., Lis, J.T., Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers (2014) Nat Genet, 46, pp. 1311-1320
  • Dao, L.T.M., Galindo-Albarrán, A.O., Castro-Mondragon, J.A., Andrieu-Soler, C., Medina-Rivera, A., Souaid, C., Charbonnier, G., Stephen, T., Genome- wide characterization of mammalian promoters with distal enhancer functions (2017) Nat Genet, 49, pp. 1073-1081
  • De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti, S., Tusi, B.K., Muller, H., Natoli, G., A large fraction of extragenic RNA pol II transcription sites overlap enhancers (2010) Plos Biol, 8
  • Diao, Y., Fang, R., Li, B., Meng, Z., Yu, J., Qiu, Y., Lin, K.C., Marina, R.J., A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells (2017) Nat Methods, 14, pp. 629-635
  • Duttke, S.H.C., Lacadie, S.A., Ibrahim, M.M., Glass, C.K., Corcoran, D.L., Benner, C., Heinz, S., Ohler, U., Human promoters are intrinsically directional (2015) Mol Cell, 57, pp. 674-684
  • Fukaya, T., Lim, B., Levine, M., Enhancer control of transcriptional bursting (2016) Cell, 166, pp. 358-368
  • Gallo, S.M., Gerrard, D.T., Miner, D., Simich, M., Soye Des, B., Bergman, C.M., Halfon, M.S., REDfly v3.0: Toward a comprehensive database of transcriptional regulatory elements in Drosophila (2011) Nucleic Acids Res, 39, pp. D118-D123
  • Hah, N., Murakami, S., Nagari, A., Danko, C.G., Kraus, W.L., Enhancer transcripts mark active estrogen receptor binding sites (2013) Genome Res, 23, pp. 1210-1223
  • Hebbar, P.B., Archer, T.K., Altered histone H1 stoichiometry and an absence of nucleosome positioning on transfected DNA (2008) J Biol Chem, 283, pp. 4595-4601
  • Ho, Y., Elefant, F., Liebhaber, S.A., Cooke, N.E., Locus control region transcription plays an active role in long-range gene activation (2006) Mol Cell, 23, pp. 365-375
  • Inoue, F., Kircher, M., Martin, B., Cooper, G.M., Witten, D.M., McManus, M.T., Ahituv, N., Shendure, J., A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity (2017) Genome Res, 27, pp. 38-52
  • Jeong, S., Stein, A., Micrococcal nuclease digestion of nuclei reveals extended nucleosome ladders having anomalous DNA lengths for chromatin assembled on non-replicating plasmids in transfected cells (1994) Nucleic Acids Res, 22, pp. 370-375
  • Jiang, J., Kosman, D., Ip, Y.T., Levine, M., The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos (1991) Genes Dev, 5, pp. 1881-1891
  • Jin, Y., Eser, U., Struhl, K., Churchman, L.S., The ground state and evolution of promoter region directionality (2017) Cell, 170, pp. 889-898
  • John, S., Sabo, P.J., Thurman, R.E., Sung, M.-H., Biddie, S.C., Johnson, T.A., Hager, G.L., Stamatoyannopoulos, J.A., Chromatin accessibility pre-determines glucocorticoid receptor binding patterns (2011) Nat Genet, 43, pp. 264-268
  • Junion, G., Spivakov, M., Girardot, C., Braun, M., Gustafson, E.H., Birney, E., Furlong, E.E.M., A transcription factor collective defines cardiac cell fate and reflects lineage history (2012) Cell, 148, pp. 473-486
  • Kaikkonen, M.U., Spann, N.J., Heinz, S., Romanoski, C.E., Allison, K.A., Stender, J.D., Chun, H.B., Benner, C., Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription (2013) Mol Cell, 51, pp. 310-325
  • Kim, A., Zhao, H., Ifrim, I., Dean, A., Globin intergenic transcription and histone acetylation dependent on an enhancer (2007) Mol Cell Biol, 27, pp. 2980-2986
  • Kim, T.-K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Har-Min, D.A., Kuersten, S., Widespread transcription at neuronal activity-regulated enhancers (2010) Nature, 465, pp. 182-187
  • Koch, F., Fenouil, R., Gut, M., Cauchy, P., Albert, T.K., Zacarias-Cabeza, J., Spicuglia, S., Hintermair, C., Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters (2011) Nat Struct Mol Biol, 18, pp. 956-963
  • Kowalczyk, M.S., Hughes, J.R., Garrick, D., Lynch, M.D., Sharpe, J.A., Sloane-Stanley, J.A., McGowan, S.J., Vernimmen, D., Intragenic enhancers act as alternative promoters (2012) Mol Cell, 45, pp. 447-458
  • Kutach, A.K., Kadonaga, J.T., The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters (2000) Mol Cell Biol, 20, pp. 4754-4764
  • Kvon, E.Z., Kazmar, T., Stampfel, G., Yáñez-Cuna, J.O., Pagani, M., Schernhuber, K., Dickson, B.J., Stark, A., Genome-scale functional characterization of Drosophila developmental enhancers in vivo (2014) Nature, 512, pp. 91-95
  • Kwak, H., Fuda, N.J., Core, L.J., Lis, J.T., Precise maps of RNA polymerase reveal how promoters direct initiation and pausing (2013) Science, 339, pp. 950-953
  • Lam, M.T.Y., Cho, H., Lesch, H.P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., Benner, C., Kosaka, M., Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription (2013) Nature, 498, pp. 511-515
  • Lam, M.T.Y., Li, W., Rosenfeld, M.G., Glass, C.K., Enhancer RNAs and regulated transcriptional programs (2014) Trends Biochem Sci, 39, pp. 170-182
  • Lenhard, B., Sandelin, A., Carninci, P., Metazoan promoters: Emerging characteristics and insights into transcriptional regulation (2012) Nat Rev Genet, 13, pp. 233-245
  • Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh, H.M., Zhang, J., Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation (2012) Cell, 148, pp. 84-98
  • Li, X.-Y., Harrison, M.M., Villalta, J.E., Kaplan, T., Eisen, M.B., Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition (2014) Elife, 3
  • Lohmann, I., Dissecting the regulation of the Drosophila cell death activator reaper (2003) Gene Expr Patterns, 3, pp. 159-163
  • Mahat, D.B., Kwak, H., Booth, G.T., Jonkers, I.H., Danko, C.G., Patel, R.K., Waters, C.T., Lis, J.T., Base-pair-resolu-tion genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq) (2016) Nat Protoc, 11, pp. 1455-1476
  • Melgar, M.F., Collins, F.S., Sethupathy, P., Discovery of active enhancers through bidirectional expression of short transcripts (2011) Genome Biol, 12, p. 113
  • Melo, C.A., Drost, J., Wijchers, P.J., Van De Werken, H., De Wit, E., Vrie-Link, J.A.F.O., Elkon, R., Kalluri, R., ERNAs are required for p53-dependent enhancer activity and gene transcription (2013) Mol Cell, 49, pp. 524-535
  • Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M.P., Chambon, P., The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombi-nants (1981) Nucleic Acids Res, 9, pp. 6047-6068
  • Natoli, G., Andrau, J.-C., Noncoding transcription at enhancers: General principles and functional models (2012) Annu Rev Genet, 46, pp. 1-19
  • Nguyen, T.A., Jones, R.D., Snavely, A.R., Pfenning, A.R., Kirchner, R., Hemberg, M., Gray, J.M., High-throughput functional comparison of promoter and enhancer activities (2016) Genome Res, 26, pp. 1023-1033
  • Ohler, U., Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction (2006) Nucleic Acids Res, 34, pp. 5943-5950
  • Plant, K.E., Routledge, S.J., Proudfoot, N.J., Intergenic transcription in the human β-globin gene cluster (2001) Mol Cell Biol, 21, pp. 6507-6514
  • Roy, A.L., Singer, D.S., Core promoters in transcription: Old problem, new insights (2015) Trends Biochem Sci, 40, pp. 165-171
  • Schor, I.E., Degner, J.F., Harnett, D., Cannavò, E., Casale, F.P., Shim, H., Garfield, D.A., Stegle, O., Promoter shape varies across populations and affects promoter evolution and expression noise (2017) Nat Genet, 49, pp. 550-558
  • Shiraki, T., Kondo, S., Katayama, S., Waki, K., Kasukawa, T., Kawaji, H., Kodzius, R., Arakawa, T., Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage (2003) Proc Natl Acad Sci, 100, pp. 15776-15781
  • Sigova, A.A., Abraham, B.J., Ji, X., Molinie, B., Hannett, N.M., Guo, Y.E., Jangi, M., Young, R.A., Transcription factor trapping by RNA in gene regulatory elements (2015) Science, 350, pp. 978-981
  • Struhl, K., Transcriptional noise and the fidelity of initiation by RNA polymerase II (2007) Nat Struct Mol Biol, 14, pp. 103-105
  • Thomas, S., Li, X.-Y., Sabo, P.J., Sandstrom, R., Thurman, R.E., Canfield, T.K., Giste, E., Celniker, S.E., Dynamic reprogramming of chromatin accessibility during Drosophila embryo development (2010) Genome Biol, 12, p. 43
  • Tuan, D., Kong, S., Hu, K., Transcription of the hypersensitive site HS2 enhancer in erythroid cells (1992) Proc Natl Acad Sci, 89, pp. 11219-11223
  • Van Arensbergen, J., Fitzpatrick, V.D., De Haas, M., Pagie, L., Sluimer, J., Bussemaker, H.J., Van Steensel, B., Genome-wide mapping of autonomous promoter activity in human cells (2017) Nat Biotechnol, 35, pp. 145-153
  • Vernimmen, D., Uncovering enhancer functions using the α-globin locus (2014) Plos Genet, 10
  • Vernimmen, D., De Gobbi, M., Sloane-Stanley, J.A., Wood, W.G., Higgs, D.R., Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression (2007) EMBO J, 26, pp. 2041-2051
  • Vo Ngoc, L., Wang, Y.-L., Kassavetis, G.A., Kadonaga, J.T., The punctilious RNA polymerase II core promoter (2017) Genes Dev, 31, pp. 1289-1301
  • Wang, D., Garcia-Bassets, I., Benner, C., Li, W., Su, X., Zhou, Y., Qiu, J., Ohgi, K.A., Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA (2011) Nature, 474, pp. 390-394
  • Wilson, C.J., Chao, D.M., Imbalzano, A.N., Schnitzler, G.R., Kingston, R.E., Young, R.A., RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling (1996) Cell, 84, pp. 235-244
  • Wu, H., Nord, A.S., Akiyama, J.A., Shoukry, M., Afzal, V., Rubin, E.M., Pennacchio, L.A., Visel, A., Tissue-specific RNA expression marks distant-acting developmental enhancers (2014) Plos Genet, 10
  • Young, R.S., Marques, A.C., Tibbit, C., Haerty, W., Bassett, A.R., Liu, J.-L., Ponting, C.P., Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome (2012) Genome Biol E, 4, pp. 427-442
  • Zabidi, M.A., Arnold, C.D., Schernhuber, K., Pagani, M., Rath, M., Frank, O., Stark, A., Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation (2015) Nature, 518, pp. 556-559
  • Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M., Furlong, E.E.M., Combinatorial binding predicts spatio–temporal cis-regulatory activity (2009) Nature, 462, pp. 65-70


---------- APA ----------
Mikhaylichenko, O., Bondarenko, V., Harnett, D., Schor, I.E., Males, M., Viales, R.R. & Furlong, E.E.M. (2018) . The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes and Development, 32(1), 42-57.
---------- CHICAGO ----------
Mikhaylichenko, O., Bondarenko, V., Harnett, D., Schor, I.E., Males, M., Viales, R.R., et al. "The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription" . Genes and Development 32, no. 1 (2018) : 42-57.
---------- MLA ----------
Mikhaylichenko, O., Bondarenko, V., Harnett, D., Schor, I.E., Males, M., Viales, R.R., et al. "The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription" . Genes and Development, vol. 32, no. 1, 2018, pp. 42-57.
---------- VANCOUVER ----------
Mikhaylichenko, O., Bondarenko, V., Harnett, D., Schor, I.E., Males, M., Viales, R.R., et al. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 2018;32(1):42-57.