Giacomini, D.; Páez-Pereda, M.; Stalla, J.; Stalla, G.K.; Arzt, E. "Molecular interaction of BMP-4, TGF-β, and estrogens in lactotrophs: Impact on the PRL promoter" (2009) Molecular Endocrinology. 23(7):1102-1114
Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The regulatory role of estrogen, bone morphogenetic protein-4 (BMP-4), and TGF-β has a strong impact on hormone secretion, gene transcription, and cellular growth of prolactin (PRL)-producing cells. In contrast to TGF-β, BMP-4 induces the secretion of PRL in GH3 cells. Therefore, we studied the mechanism of their transcriptional regulation. Both BMP-4 and TGF-β inhibited the transcriptional activity of the estrogen receptor (ER). Estrogens had no effect on TGF-β-specific Smad protein transcriptional activity but presented a stimulatory action on the transcriptional activity of the BMP-4-specific Smads. BMP-4/estrogen cross talk was observed both on PRL hormone secretion and on the PRL promoter. This cross talk was abolished by the expression of a dominant-negative form for Smad-1 and treatment with ICI 182780 but not by point mutagenesis of the estrogen response element site within the promoter, suggesting that Smad/ER interaction might be dependent on the ER and a Smad binding element. By serial deletions of the PRL promoter, we observed that indeed a region responsive to BMP-4 is located between -2000 and -1500 bp upstream of the transcriptional start site. Chromatin immunoprecipitation confirmed Smad-4 binding to this region, and by specific mutation and gel shift assay, a Smad binding element responsible site was characterized. These results demonstrate that the different transcriptional factors involved in the Smad/ER complexes regulate their transcriptional activity in differential ways and may account for the different regulatory roles of BMP-4, TGF-β, and estrogens in PRL-producing cells. Copyright © 2009 by The Endocrine Society.


Documento: Artículo
Título:Molecular interaction of BMP-4, TGF-β, and estrogens in lactotrophs: Impact on the PRL promoter
Autor:Giacomini, D.; Páez-Pereda, M.; Stalla, J.; Stalla, G.K.; Arzt, E.
Filiación:Laboratorio de Fisiología Y Biología Molecular, Departamento de Fisiología, Biología Molecular Y Celular, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Max-Planck Institute of Psychiatry, 80804 Munich, Germany
Affectis Pharmaceuticals, 82152 Martinsried, Germany
Laboratorio Fisiología Y Biología Molecular, Departamento de Fisiología, Biología Molecular Y Celular, Pabellon II, 1428 Buenos Aires, Argentina
Palabras clave:bone morphogenetic protein 4; estrogen; estrogen receptor; fulvestrant; prolactin; Smad protein; Smad1 protein; transforming growth factor beta; animal cell; article; binding site; chromatin immunoprecipitation; controlled study; estrogen responsive element; gene mutation; hormone release; mutagenesis; nonhuman; priority journal; prolactin secreting cell; protein analysis; protein binding; protein expression; protein function; protein localization; protein protein interaction; rat; Animals; Binding Sites; Bone Morphogenetic Protein 4; Cells, Cultured; Estrogens; Lactotrophs; Prolactin; Promoter Regions, Genetic; Protein Binding; Rats; Receptor Cross-Talk; Receptors, Estrogen; Smad Proteins; Transcriptional Activation; Transforming Growth Factor beta
Página de inicio:1102
Página de fin:1114
Título revista:Molecular Endocrinology
Título revista abreviado:Mol. Endocrinol.
CAS:Smad protein, 62395-38-4; Smad1 protein, 444952-89-0; fulvestrant, 129453-61-8; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; Bmp4 protein, rat; Bone Morphogenetic Protein 4; Estrogens; Prolactin, 9002-62-4; Receptors, Estrogen; Smad Proteins; Transforming Growth Factor beta


  • Goffin, V., Bernichtein, S., Touraine, P., Kelly, P.A., Development and potential clinical uses of human prolactin receptor antagonists (2005) Endocrine Reviews, 26 (3), pp. 400-422. , DOI 10.1210/er.2004-0016
  • Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., Kelly, P.A., Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice (1998) Endocrine Reviews, 19 (3), pp. 225-268
  • Freeman, M.E., Kanyicska, B., Lerant, A., Nagy, G., Prolactin: Structure, function, and regulation of secretion (2000) Physiological Reviews, 80 (4), pp. 1523-1631
  • De Paul, A.L., Pons, P., Aoki, A., Torres, A.I., Heterogeneity of pituitary lactotrophs: Immunocytochemical identification of functional subtypes (1997) Acta Histochemica, 99 (3), pp. 277-289
  • Sasaki, F., Sano, M., Roles of the arcuate nucleus and ovary in the maturation of growth hormone, prolactin, and nongranulated cells in the mouse adenohypophysis during postnatal development: A stereological morphometric study by electron microscopy (1986) Endocrinology, 119 (4), pp. 1682-1689
  • Chen, C.L., Meites, J., Effects of estrogen and progesterone on serum and pituitary prolactin levels in ovariectomized rats (1970) Endocrinology, 86, pp. 503-505
  • Burnstein, K.L., Cidlowski, J.A., Multiple mechanisms for regulation of steroid hormone action (1993) Journal of Cellular Biochemistry, 51 (2), pp. 130-134. , DOI 10.1002/jcb.240510203
  • Waterman, M.L., Adler, S., Nelson, C., Greene, G.L., Evans, R.M., Rosenfeld, M.G., A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene (1988) Molecular Endocrinology, 2 (1), pp. 14-21
  • Raymond, V., Bealieu, M., Labrie, F., Potent antidopaminergic activity of estradiol at the pituitary level on prolactin release (1978) Science, 200 (4346), pp. 1173-1175
  • Newton, C.J., Arzt, E., Stalla, G.K., Involvement of the estrogen receptor in the growth response of pituitary tumor cells to interleukin-2 (1994) Biochem Biophys Res Commun, 205, pp. 1930-1937
  • Gillam, M.P., Molitch, M.E., Lombardi, G., Colao, A., Advances in the treatment of prolactinomas (2006) Endocrine Reviews, 27 (5), pp. 485-534. ,, DOI 10.1210/er.2005-9998
  • Garcia, M.M., Kapcala, L.P., Growth of a microprolactinoma to a macroprolactinoma during estrogen therapy (1995) J Endocrinol Invest, 18, pp. 450-455
  • Heaney, A.P., Horwitz, G.A., Wang, Z., Singson, R., Melmed, S., Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis (1999) Nature Medicine, 5 (11), pp. 1317-1321. , DOI 10.1038/15275
  • Wiklund, J., Wertz, N., Gorski, J., A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats (1981) Endocrinology, 109 (5), pp. 1700-1707
  • Kelly, M.A., Rubinstein, M., Asa, S.L., Zhang, G., Saez, C., Bunzow, J.R., Allen, R.G., Low, M.J., Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice (1997) Neuron, 19 (1), pp. 103-113. , DOI 10.1016/S0896-6273(00)80351-7
  • Asa, S.L., Kelly, M.A., Grandy, D.K., Low, M.J., Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice (1999) Endocrinology, 140 (11), pp. 5348-5355
  • Saiardi, A., Bozzi, Y., Baik, J.-H., Borrelli, E., Antiproliferative role of dopamine: Loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia (1997) Neuron, 19 (1), pp. 115-126. , DOI 10.1016/S0896-6273(00)80352-9
  • Sarkar, D.K., Kim, K.H., Minami, S., Transforming growth factor-β1 messenger RNA and protein expression in the pituitary gland: Its action on prolactin secretion and lactotropic growth (1992) Mol Endocrinol, 6, pp. 1825-1833
  • Delidow, B.C., Billis, W.M., Agarwal, P., White, B.A., Inhibition of prolactin gene transcription by transforming growth factor-β in GH3 cells (1991) Mol Endocrinol, 5, pp. 1716-1722
  • Lacerte, A., Lee, E.-H., Reynaud, R., Canaff, L., De Guise, C., Devost, D., Ali, S., Lebrun, J.-J., Activin inhibits pituitary prolactin expression and cell growth through Smads, Pit-1 and menin (2004) Molecular Endocrinology, 18 (6), pp. 1558-1569. , DOI 10.1210/me.2003-0470
  • Ramsdell, J.S., Transforming growth factor-α and -β are potent and effective inhibitors of GH4 pituitary tumor cell proliferation (1991) Endocrinology, 128, pp. 1981-1990
  • Coya, R., Alvarez, C.V., Perez, F., Gianzo, C., Dieguez, C., Effects of TGF-β1 on prolactin synthesis and secretion: An in-vitro study (1999) Journal of Neuroendocrinology, 11 (5), pp. 351-360. , DOI 10.1046/j.1365-2826.1999.00336.x
  • Pastorcic, M., De, A., Boyadjieva, N., Vale, W., Sarkar, D.K., Reduction in the expression and action of transforming growth factor β1 on lactotropes during estrogen-induced tumorigenesis in the anterior pituitary (1995) Cancer Res, 55, pp. 4892-4898
  • Burns, G., Sarkar, D.K., Transforming growth factor-β1-like immunoreactivity in the pituitary gland of the rat: Effect of estrogen (1993) Endocrinology, 133 (3), pp. 1444-1449. , DOI 10.1210/en.133.3.1444
  • Hentges, S., Pastorcic, M., De, A., Boyadjieva, N., Sarkar, D.K., Opposing actions of two transforming growth factor-β isoforms on pituitary lactotropic cell proliferation (2000) Endocrinology, 141 (4), pp. 1528-1535. , DOI 10.1210/en.141.4.1528
  • Scully, K.M., Rosenfeld, M.G., Pituitary development: Regulatory codes in mammalian organogenesis (2002) Science, 295 (5563), pp. 2231-2235. , DOI 10.1126/science.1062736
  • Davis, S.W., Camper, S.A., Noggin regulates Bmp4 activity during pituitary induction (2007) Developmental Biology, 305 (1), pp. 145-160. , DOI 10.1016/j.ydbio.2007.02.001, PII S0012160607000899
  • Paez-Pereda, M., Giacomini, D., Refojo, D., Nagashima, A.C., Hopfner, U., Grubler, Y., Chervin, A., Arzt, E., Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (3), pp. 1034-1039. , DOI 10.1073/pnas.0237312100
  • Day, R.N., Maurer, R.A., The distal enhancer region of the rat prolactin gene contains elements conferring response to multiple hormones (1989) Molecular Endocrinology, 3 (1), pp. 3-9
  • Kim, K.E., Day, R.N., Maurer, R.A., Functional analysis of the interaction of a tissue-specific factor with an upstream enhancer element of the rat prolactin gene (1988) Molecular Endocrinology, 2 (12), pp. 1374-1381
  • Gutierrez-Hartmann, A., Siddiqui, S., Loukin, S., Selective transcription and DNase I protection of the rat prolactin gene by GH3 pituitary cell-free extracts (1987) Proc Natl Acad Sci USA, 84, pp. 5211-5215
  • Nelson, C., Crenshaw III, E.B., Franco, R., Lira, S.A., Albert, V.R., Evans, R.M., Rosenfeld, M.G., Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes (1986) Nature, 322, pp. 557-562
  • Maurer, R.A., Selective binding of the estradiol receptor to a region at least one kilobase upstream from the rat prolactin gene (1985) DNA, 4 (1), pp. 1-9
  • Simmons, D.M., Voss, J.W., Ingraham, H.A., Holloway, J.M., Broide, R.S., Rosenfeld, M.G., Swanson, L.W., Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors (1990) Genes and Development, 4 (5), pp. 695-711
  • Day, R.N., Koike, S., Sakai, M., Muramatsu, M., Maurer, R.A., Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene (1990) Mol Endocrinol, 4, pp. 1964-1971
  • Howard, P.W., Maurer, R.A., A composite Ets/Pit-1 binding site in the prolactin gene can mediate transcriptional responses to multiple signal transduction pathways (1995) J Biol Chem, 270, pp. 20930-20936
  • Bradford, A.P., Conrad, K.E., Tran, P.H., Ostrowski, M.C., Gutierrez-Hartmann, A., GHF-1/Pit-1 functions as a cell-specific integrator of Ras signaling by targeting the Ras pathway to a composite Ets-1/GHF-1 response element (1996) Journal of Biological Chemistry, 271 (40), pp. 24639-24648. , DOI 10.1074/jbc.271.40.24639
  • Bradford, A.P., Conrad, K.E., Wasylyk, C., Wasylyk, B., Gutierrez-Hartmann, A., Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: Mapping of the essential c-Ets-1 domain (1995) Mol Cell Biol, 15, pp. 2849-2857
  • Diamond, S.E., Gutierrez-Hartmann, A., A 26-amino acid insertion domain defines a functional transcription switch motif in Pit-1β (1996) Journal of Biological Chemistry, 271 (46), pp. 28925-28932. , DOI 10.1074/jbc.271.46.28925
  • Bradford, A.P., Brodsky, K.S., Diamond, S.E., Kuhn, L.C., Liu, Y., Gutierrez-Hartmann, A., The Pit-1 homeodomain and β-domain interact with Ets-1 and modulate synergistic activation of the rat prolactin promoter (2000) Journal of Biological Chemistry, 275 (5), pp. 3100-3106. , DOI 10.1074/jbc.275.5.3100
  • Adamson, A.D., Friedrichsen, S., Semprini, S., Harper, C.V., Mullins, J.J., White, M.R.H., Davis, J.R.E., Human prolactin gene promoter regulation by estrogen: Convergence with tumor necrosis factor-α signaling (2008) Endocrinology, 149 (2), pp. 687-694. ,, DOI 10.1210/en.2007-1066
  • Murdoch, F.E., Byrne, L.M., Ariazi, E.A., Furlow, J.D., Meier, D.A., Gorski, J., Estrogen receptor binding to DNA: Affinity for nonpalindromic elements from the rat prolactin gene (1995) Biochemistry, 34, pp. 9144-9150
  • Berwaer, M., Monget, P., Peers, B., Mathy-Hartert, M., Bellefroid, E., Davis, J.R., Belayew, A., Martial, J.A., Multihormonal regulation of the human prolactin gene expression from 5000 bp of its upstream sequence (1991) Mol Cell Endocrinol, 80, pp. 53-64
  • Farrow, K.N., Gutierrez-Hartmann, A., Transforming growth factor-β1 inhibits rat prolactin promoter activity in GH4 neuroendocrine cells (1999) DNA Cell Biol, 18, pp. 863-873
  • Komolov, I.S., Perez-Arce, J.A., Fedotov, V.P., The effects of estradiol on prolactin and growth hormone secretion in cultured pituitary cells from intact and ovariectomized rats (1980) Endokrinologie, 75 (3), pp. 278-284
  • Miyoshi, T., Otsuka, F., Otani, H., Inagaki, K., Goto, J., Yamashita, M., Ogura, T., Makino, H., Involvement of bone morphogenetic protein-4 in GH regulation by octreotide and bromocriptine in rat pituitary GH3 cells (2008) Journal of Endocrinology, 197 (1), pp. 159-169. , DOI 10.1677/JOE-07-0549
  • Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kato, S., Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators (1999) Science, 283 (5406), pp. 1317-1321
  • Kang, H.-Y., Lin, H.-K., Hu, Y.-C., Yeh, S., Huang, K.-E., Chang, C., From transforming growth factor-β signaling to androgen action: Identification of Smad3 as an androgen receptor coregulator in prostate cancer cells (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (6), pp. 3018-3023. , DOI 10.1073/pnas.061305498
  • Hayes, S.A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D.M., Ten Dijke, P., Sun, Z., SMAD3 represses androgen receptor-mediated transcription (2001) Cancer Res, 61, pp. 2112-2118
  • Song, C.-Z., Tian, X., Gelehrter, T.D., Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3 (1999) Proceedings of the National Academy of Sciences of the United States of America, 96 (21), pp. 11776-11781. , DOI 10.1073/pnas.96.21.11776
  • Giacomini, D., Paez-Pereda, M., Theodoropoulou, M., Labeur, M., Refojo, D., Gerez, J., Chervin, A., Arzt, E., Bone morphogenetic protein-4 inhibits corticotroph tumor cells: Involvement in the retinoic acid inhibitory action (2006) Endocrinology, 147 (1), pp. 247-256. ,, DOI 10.1210/en.2005-0958
  • Matsuda, T., Yamamoto, T., Muraguchi, A., Saatcioglu, F., Cross-talk between Transforming Growth Factor-β and Estrogen Receptor Signaling through Smad3 (2001) Journal of Biological Chemistry, 276 (46), pp. 42908-42914. , DOI 10.1074/jbc.M105316200
  • Yamamoto, T., Saatcioglu, F., Matsuda, T., Cross-talk between bone morphogenic proteins and estrogen receptor signaling (2002) Endocrinology, 143 (7), pp. 2635-2642. , DOI 10.1210/en.143.7.2635
  • Sarkar, D.K., Pastorcic, M., De, A., Engel, M., Moses, H., Ghasemzadeh, M.B., Role of transforming growth factor (TGF)-β type I and TGF-β type II receptors in the TGF-β1-regulated gene expression in pituitary prolactin- Secreting lactotropes (1998) Endocrinology, 139 (8), pp. 3620-3628. , DOI 10.1210/en.139.8.3620
  • Kusanagi, K., Inoue, H., Ishidou, Y., Mishima, H.K., Kawabata, M., Miyazono, K., Characterization of a bone morphogenetic protein-responsive Smad- Binding element (2000) Molecular Biology of the Cell, 11 (2), pp. 555-565
  • Massagué, J., How cells read TGF-β signals (2000) Nat Rev Mol Cell Biol, 1, pp. 169-178
  • Massagué, J., Blain, S.W., Lo, R.S., TGFβ signaling in growth control, cancer, and heritable disorders (2000) Cell, 103, pp. 295-309
  • Chen, C.-R., Kang, Y., Siegel, P.M., Massague, J., E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression (2002) Cell, 110 (1), pp. 19-32. , DOI 10.1016/S0092-8674(02)00801-2
  • Arzt, E., Buric, R., Stelzer, G., Stalla, J., Sauer, J., Renner, U., Stalla, G.K., Interleukin involvement in anterior pituitary cell growth regulation: Effects of IL-2 and IL-6 (1993) Endocrinology, 132 (1), pp. 459-467. , DOI 10.1210/en.132.1.459
  • Berthois, Y., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture (1986) Proceedings of the National Academy of Sciences of the United States of America, 83 (8), pp. 2496-2500
  • Farrow, K.N., Manning, N., Schaufele, F., Gutierrez-Hartmann, A., The c-Jun δ-domain inhibits neuroendocrine promoter activity in a DNA sequence- And pituitary-specific manner (1996) Journal of Biological Chemistry, 271 (29), pp. 17139-17146. , DOI 10.1074/jbc.271.29.17139
  • Zschocke, J., Manthey, D., Bayatti, N., Van Der Burg, B., Goodenough, S., Behl, C., Estrogen receptor α-mediated silencing of caveolin gene expression in neuronal cells (2002) Journal of Biological Chemistry, 277 (41), pp. 38772-38780. , DOI 10.1074/jbc.M205664200
  • Korchynskyi, O., Ten Dijke, P., Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter (2002) J Biol Chem, 277, pp. 4883-4891
  • Spinella-Jaegle, S., Roman-Roman, S., Faucheu, C., Dunn, F.-W., Kawai, S., Gallea, S., Stiot, V., Rawadi, G., Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β1 on osteoblast differentiation (2001) Bone, 29 (4), pp. 323-330. , DOI 10.1016/S8756-3282(01)00580-4, PII S8756328201005804
  • Norris, J.D., Fan, D., Kerner, S.A., McDonnell, D.P., Identification of a third autonomous activation domain within the human estrogen receptor (1997) Molecular Endocrinology, 11 (6), pp. 747-754. , DOI 10.1210/me.11.6.747
  • Carbia-Nagashima, A., Gerez, J., Perez-Castro, C., Paez-Pereda, M., Silberstein, S., Stalla, G.K., Holsboer, F., Arzt, E., RSUME, a Small RWD-Containing Protein, Enhances SUMO Conjugation and Stabilizes HIF-1α during Hypoxia (2007) Cell, 131 (2), pp. 309-323. , DOI 10.1016/j.cell.2007.07.044, PII S0092867407010240
  • Maurer, R.A., Notides, A.C., Identification of an estrogen-responsive element from the 5'-flanking region of the rat prolactin gene (1987) Molecular and Cellular Biology, 7 (12), pp. 4247-4254
  • Stopa, M., Anhuf, D., Terstegen, L., Gatsios, P., Gressner, A.M., Dooley, S., Participation of Smad2, Smad3, and Smad4 in transforming growth factor β (TGF-β)-induced activation of Smad7: The TGF-β response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation (2000) Journal of Biological Chemistry, 275 (38), pp. 29308-29317. , DOI 10.1074/jbc.M003282200
  • Li, W., Chen, F., Nagarajan, R.P., Liu, X., Chen, Y., Characterization of the DNA-binding property of Smad5 (2001) Biochemical and Biophysical Research Communications, 286 (5), pp. 1163-1169. , DOI 10.1006/bbrc.2001.5529
  • Paez-Pereda, M., Kovalovsky, D., Hopfner, U., Theodoropoulou, M., Pagotto, U., Uhl, E., Losa, M., Stalla, G.K., Retinoic acid prevents experimental Cushing syndrome (2001) Journal of Clinical Investigation, 108 (8), pp. 1123-1131. , DOI 10.1172/JCI200111098
  • Liberman, A.C., Refojo, D., Druker, J., Toscano, M., Rein, T., Holsboer, F., Arzt, E., The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction (2007) FASEB Journal, 21 (4), pp. 1177-1188. ,, DOI 10.1096/fj.06-7452com


---------- APA ----------
Giacomini, D., Páez-Pereda, M., Stalla, J., Stalla, G.K. & Arzt, E. (2009) . Molecular interaction of BMP-4, TGF-β, and estrogens in lactotrophs: Impact on the PRL promoter. Molecular Endocrinology, 23(7), 1102-1114.
---------- CHICAGO ----------
Giacomini, D., Páez-Pereda, M., Stalla, J., Stalla, G.K., Arzt, E. "Molecular interaction of BMP-4, TGF-β, and estrogens in lactotrophs: Impact on the PRL promoter" . Molecular Endocrinology 23, no. 7 (2009) : 1102-1114.
---------- MLA ----------
Giacomini, D., Páez-Pereda, M., Stalla, J., Stalla, G.K., Arzt, E. "Molecular interaction of BMP-4, TGF-β, and estrogens in lactotrophs: Impact on the PRL promoter" . Molecular Endocrinology, vol. 23, no. 7, 2009, pp. 1102-1114.
---------- VANCOUVER ----------
Giacomini, D., Páez-Pereda, M., Stalla, J., Stalla, G.K., Arzt, E. Molecular interaction of BMP-4, TGF-β, and estrogens in lactotrophs: Impact on the PRL promoter. Mol. Endocrinol. 2009;23(7):1102-1114.