Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The stress response involves complex physiological mechanisms that maximize behavioral efficacy during attack or defense and is highly conserved in all vertebrates. Key mediators of the stress response are pituitary hormones encoded by the proopiomelanocortin gene (POMC). Despite conservation of physiological function and expression pattern of POMC in all vertebrates, phylogenetic footprinting analyses at the POMC locus across vertebrates failed to detect conserved noncoding sequences with potential regulatory function. To investigate whether ortholog POMC promoters from extremely distant vertebrates are functionally conserved, we used 5′-flanking sequences of the teleost fish Tetraodon nigroviridis POMCα gene to produce transgenic mice. Tetraodon POMCα promoter targeted reporter gene expression exclusively to mouse pituitary cells that normally express Pomc. Importantly, transgenic expression in mouse corticotrophs was increased after adrenalectomy. To understand how conservation of precise gene expression mechanisms coexists with great sequence divergence, we investigated whether very short elements are still conserved in all vertebrate POMC promoters. Multiple local sequence alignments that consider phylogenetic relationships of ortholog regions identified a unique 10-bp motif GTGCTAA(T/G)CC that is usually present in two copies in POMC 5′-flanking sequences of all vertebrates. Underlined nucleotides represent totally conserved sequences. Deletion of these paired motifs from Tetraodon POMCα promoter markedly reduced its transcriptional activity in a mouse corticotropic cell line and in pituitary POMC cells of transgenic mice. In mammals, the conserved motifs correspond to reported binding sites for pituitary-specific nuclear proteins that participate in POMC transcriptional regulation. Together, these results demonstrate that mechanisms that participate in pituitary-specific and hormonally regulated expression of POMC have been preserved since mammals and teleosts diverged from a common ancestor 450 million years ago despite great promoter sequence divergence. Copyright © 2007 by The Endocrine Society.

Registro:

Documento: Artículo
Título:Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence
Autor:Bumaschny, V.F.; De Souza, F.S.J.; Leal, R.A.L.; Santangelo, A.M.; Baetscher, M.; Levi, D.H.; Low, M.J.; Rubinstein, M.
Filiación:Instituto de Investigaciones en Ingeniería Genética Y Biología Molecular, Consejo Nacional de Investigaciones Cientificas Y Técnicas (CONICET), Argentina
Departamento de Fisiología, Biología Molecular Y Celular, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Argentina
Centro de Estudios Científicos, Valdivia, Chile
Harvard Stem Cell Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, United States
Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, Portland, OR 97239, United States
Department of Behavioral Neuroscience and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, United States
Instituto de Investigaciones en Ingenieria Genética Y Biologia Molecular, Consejo Nacional de Investigaciones Cientificas Y Técnicas, Vuelta de Obligado 2490, Buenos Aires, Argentina
Palabras clave:cell nucleus receptor; proopiomelanocortin; adrenalectomy; animal experiment; animal tissue; article; controlled study; corticotropin release; DNA flanking region; DNA sequence; female; gene; gene deletion; gene locus; gene sequence; genetic conservation; genetic variability; hormonal regulation; molecular phylogeny; mouse; nonhuman; orthology; priority journal; promoter region; proopiomelanocortin gene; protein motif; reporter gene; sequence alignment; sequence analysis; teleost; transcription regulation; transgenic mouse; Amino Acid Motifs; Animals; CHO Cells; Cricetinae; Cricetulus; Fishes; Gene Expression Regulation; Mice; Mice, Transgenic; Phylogeny; Pituitary Gland; Pro-Opiomelanocortin; Promoter Regions (Genetics); Species Specificity; Transcription, Genetic; Mammalia; Mus musculus; Teleostei; Tetraodon; Tetraodon nigroviridis; Vertebrata
Año:2007
Volumen:21
Número:11
Página de inicio:2738
Página de fin:2749
DOI: http://dx.doi.org/10.1210/me.2006-0557
Título revista:Molecular Endocrinology
Título revista abreviado:Mol. Endocrinol.
ISSN:08888809
CODEN:MOENE
CAS:proopiomelanocortin, 66796-54-1; Pro-Opiomelanocortin, 66796-54-1
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_08888809_v21_n11_p2738_Bumaschny.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08888809_v21_n11_p2738_Bumaschny

Referencias:

  • Lovejoy, D.A., Balment, R.J., Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates (1999) Gen Comp Endocrinol, 115, pp. 1-22
  • Carrasco, G.A., Van de Kar, L.D., Neuroendocrine pharmacology of stress (2003) Eur J Pharmacol, 463, pp. 235-272
  • Flik, G., Klaren, P.H., Van den Burg, E.H., Metz, J.R., Huising, M.O., CRF and stress in fish (2006) Gen Comp Endocrinol, 146, pp. 36-44
  • Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G., Gruters, A., Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans (1998) Nat Genet, 19, pp. 155-157
  • Farooqi, I.S., Drop, S., Clements, A., Keogh, J.M., Biernacka, J., Lowenbein, S., Challis, B.G., O'Rahilly, S., Heterozygosity for a POMC-null mutation and increased obesity risk in humans (2006) Diabetes, 55, pp. 2549-2553
  • Bennett, H.P., Biosynthetic fate of the amino-terminal fragment of pro-opiomelanocortin within the intermediate lobe of the mouse pituitary (1986) Peptides, 7, pp. 615-622
  • Dores, R.M., Lecaude, S., Trends in the evolution of the proopiomelanocortin gene (2005) Gen Comp Endocrinol, 142, pp. 81-93
  • de Souza, F.S., Bumaschny, V.F., Low, M.J., Rubinstein, M., Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes (2005) Mol Biol Evol, 22, pp. 2417-2427
  • Liu, B., Hammer, G.D., Rubinstein, M., Mortrud, M., Low, M.J., Identification of DNA elements cooperatively activating proopiomelanocortin gene expression in the pituitary glands of transgenic mice (1992) Mol Cell Biol, 12, pp. 3978-3990
  • Lamonerie, T., Tremblay, J.J., Lanctot, C., Therrien, M., Gauthier, Y., Drouin, J., Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the proopiomelanocortin gene (1996) Genes Dev, 10, pp. 1284-1295
  • Poulin, G., Turgeon, B., Drouin, J., NeuroD1/β2 contributes to cell-specific transcription of the proopiomelanocortin gene (1997) Mol Cell Biol, 17, pp. 6673-6682
  • Drouin, J., Maira, M., Philips, A., Novel mechanism of action for Nur77 and antagonism by glucocorticoids: A convergent mechanism for CRH activation and glucocorticoid repression of POMC gene transcription (1998) J Steroid Biochem Mol Biol, 65, pp. 59-63
  • Lamolet, B., Pulichino, A.M., Lamonerie, T., Gauthier, Y., Brue, T., Enjalbert, A., Drouin, J., A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins (2001) Cell, 104, pp. 849-859
  • Ezzat, S., Mader, R., Yu, S., Ning, T., Poussier, P., Asa, S.L., Ikaros integrates endocrine and immune system development (2005) J Clin Invest, 115, pp. 1021-1029
  • Mynard, V., Guignat, L., Devin-Leclerc, J., Bertagna, X., Catelli, M.G., Different mechanisms for leukemia inhibitory factor-dependent activation of two proopiomelanocortin promoter regions (2002) Endocrinology, 143, pp. 3916-3924
  • Liu, N.A., Huang, H., Yang, Z., Herzog, W., Hammerschmidt, M., Lin, S., Melmed, S., Pituitary corticotroph ontogeny and regulation in transgenic zebrafish (2003) Mol Endocrinol, 17, pp. 959-966
  • de Souza, F.S., Santangelo, A.M., Bumaschny, V., Avale, M.E., Smart, J.L., Low, M.J., Rubinstein, M., Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting (2005) Mol Cell Biol, 25, pp. 3076-3086
  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H 2004 Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946-957; Kumar, S., Hedges, S.B., A molecular timescale for vertebrate evolution (1998) Nature, 392, pp. 917-920
  • Sathasivam, K., Baxendale, S., Mangiarini, L., Bertaux, F., Hetherington, C., Kanazawa, I., Lehrach, H., Bates, G.P., Aberrant processing of the Fugu HD (FrHD) mRNA in mouse cells and in transgenic mice (1997) Hum Mol Genet, 6, pp. 2141-2149
  • Miles, C.G., Rankin, L., Smith, S.I., Niksic, M., Elgar, G., Hastie, N.D., Faithful expression of a tagged Fugu WT1 protein from a genomic transgene in zebrafish: Efficient splicing of pufferfish genes in zebrafish but not mice (2003) Nucleic Acids Res, 31, pp. 2795-2802
  • Schwartz, S., Zhang, Z., Frazer, K.A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Miller, W., PipMaker: A web server for aligning two genomic DNA sequences (2000) Genome Res, 10, pp. 577-586
  • Blanchette, M., Tompa, M., FootPrinter: A program designed for phylogenetic footprinting (2003) Nucleic Acids Res, 31, pp. 3840-3842
  • Szeto, D.P., Ryan, A.K., O'Connell, S.M., Rosenfeld, M.G., P-OTX: A PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development (1996) Proc Natl Acad Sci USA, 93, pp. 7706-7710
  • Liu, B., Mortrud, M., Low, M.J., DNA elements with AT-rich core sequences direct pituitary cell-specific expression of the pro-opiomelanocortin gene in transgenic mice (1995) Biochem J, 312 (PART 3), pp. 827-832
  • Kimura, M., Takahata, N., Selective constraint in protein polymorphism: Study of the effectively neutral mutation model by using an improved pseudosampling method (1983) Proc Natl Acad Sci USA, 80, pp. 1048-1052
  • Loots, G.G., Locksley, R.M., Blankespoor, C.M., Wang, Z.E., Miller, W., Rubin, E.M., Frazer, K.A., Identification of a coordinate regulator of interleukins 4, 13, and 5 by crossspecies sequence comparisons (2000) Science, 288, pp. 136-140
  • Dermitzakis, E.T., Clark, A.G., Evolution of transcription factor binding sites in mammalian gene regulatory regions: Conservation and turnover (2002) Mol Biol Evol, 19, pp. 1114-1121
  • Wasserman, W.W., Sandelin, A., Applied bioinformatics for the identification of regulatory elements (2004) Nat Rev Genet, 5, pp. 276-287
  • Plessy, C., Dickmeis, T., Chalmel, F., Strahle, U., Enhancer sequence conservation between vertebrates is favoured in developmental regulator genes (2005) Trends Genet, 21, pp. 207-210
  • Fisher, S., Grice, E.A., Vinton, R.M., Bessling, S.L., McCallion, A.S., Conservation of RET regulatory function from human to zebrafish without sequence similarity (2006) Science, 312, pp. 276-279
  • Boffelli, D., Nobrega, M.A., Rubin, E.M., Comparative genomics at the vertebrate extremes (2004) Nat Rev Genet, 5, pp. 456-465
  • Ludwig, M.Z., Bergman, C., Patel, N.H., Kreitman, M., Evidence for stabilizing selection in a eukaryotic enhancer element (2000) Nature, 403, pp. 564-567
  • Therrien, M., Drouin, J., Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements (1991) Mol Cell Biol, 11, pp. 3492-3503
  • Gilligan, P., Brenner, S., Venkatesh, B., Neurone-specific expression and regulation of the pufferfish isotocin and vasotocin genes in transgenic mice (2003) J Neuroendocrinol, 15, pp. 1027-1036
  • Pfeffer, P.L., Bouchard, M., Busslinger, M., Pax2 and homeodomain proteins cooperatively regulate a 435 bp enhancer of the mouse Pax5 gene at the midbrain-hindbrain boundary (2000) Development, 127, pp. 1017-1028
  • Datta, A.K., Efficient amplification using 'megaprimer' by asymmetric polymerase chain reaction (1995) Nucleic Acids Res, 23, pp. 4530-4531
  • Liu, J., Lin, C., Gleiberman, A., Ohgi, K.A., Herman, T., Huang, H.P., Tsai, M.J., Rosenfeld, M.G., Tbx19, a tissue-selective regulator of POMC gene expression (2001) Proc Natl Acad Sci USA, 98, pp. 8674-8679
  • Young, J.I., Otero, V., Cerdan, M.G., Falzone, T.L., Chan, E.C., Low, M.J., Rubinstein, M., Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice (1998) J Neurosci, 18, pp. 6631-6640

Citas:

---------- APA ----------
Bumaschny, V.F., De Souza, F.S.J., Leal, R.A.L., Santangelo, A.M., Baetscher, M., Levi, D.H., Low, M.J.,..., Rubinstein, M. (2007) . Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence. Molecular Endocrinology, 21(11), 2738-2749.
http://dx.doi.org/10.1210/me.2006-0557
---------- CHICAGO ----------
Bumaschny, V.F., De Souza, F.S.J., Leal, R.A.L., Santangelo, A.M., Baetscher, M., Levi, D.H., et al. "Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence" . Molecular Endocrinology 21, no. 11 (2007) : 2738-2749.
http://dx.doi.org/10.1210/me.2006-0557
---------- MLA ----------
Bumaschny, V.F., De Souza, F.S.J., Leal, R.A.L., Santangelo, A.M., Baetscher, M., Levi, D.H., et al. "Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence" . Molecular Endocrinology, vol. 21, no. 11, 2007, pp. 2738-2749.
http://dx.doi.org/10.1210/me.2006-0557
---------- VANCOUVER ----------
Bumaschny, V.F., De Souza, F.S.J., Leal, R.A.L., Santangelo, A.M., Baetscher, M., Levi, D.H., et al. Transcriptional regulation of pituitary POMC is conserved at the vertebrate extremes despite great promoter sequence divergence. Mol. Endocrinol. 2007;21(11):2738-2749.
http://dx.doi.org/10.1210/me.2006-0557