Artículo

Aran, M.; Smal, C.; Pellizza, L.; Gallo, M.; Otero, L.H.; Klinke, S.; Goldbaum, F.A.; Ithurralde, E.R.; Bercovich, A.; Mac Cormack, W.P.; Turjanski, A.G.; Cicero, D.O. "Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain" (2014) Proteins: Structure, Function and Bioinformatics. 82(11):3062-3078
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The structure of the BA42 protein belonging to the Antarctic flavobacterium Bizionia argentinensis was determined by nuclear magnetic resonance and X-ray crystallography. This is the first structure of a member of the PF04536 family comprised of a stand-alone TPM domain. The structure reveals a new topological variant of the four β-strands constituting the central β-sheet of the αβα architecture and a double metal binding site stabilizing a pair of crossing loops, not observed in previous structures of proteins belonging to this family. BA42 shows differences in structure and dynamics in the presence or absence of bound metals. The affinity for divalent metal ions is close to that observed in proteins that modulate their activity as a function of metal concentration, anticipating a possible role for BA42. © 2014 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain
Autor:Aran, M.; Smal, C.; Pellizza, L.; Gallo, M.; Otero, L.H.; Klinke, S.; Goldbaum, F.A.; Ithurralde, E.R.; Bercovich, A.; Mac Cormack, W.P.; Turjanski, A.G.; Cicero, D.O.
Filiación:Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, e INQUIMAE-CONICET, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Biosidus S.A., Constitución 4234, Buenos Aires, C1254ABX, Argentina
Instituto Antártico Argentino, Cerrito 1248, Buenos Aires, C1010AAZ, Argentina
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma 'Tor Vergata', via della Ricerca Scientifica SNC, Rome, 00133, Italy
Palabras clave:Antarctic bacteria; BA42; Bizionia argentinensis; Nuclear magnetic resonance; Protein structure; Structural genomics; X-ray crystallography; ba42 protein; bacterial protein; metal ion; unclassified drug; bacterial protein; calcium; metal; Article; beta sheet; binding affinity; binding site; Bizionia argentinensis; crystal structure; Flavobacterium; metal binding; molecular dynamics; nonhuman; nuclear magnetic resonance; priority journal; protein domain; protein family; protein stability; X ray crystallography; amino acid sequence; animal; Antarctica; chemical structure; chemistry; circular dichroism; Flavobacteriaceae; genetics; metabolism; molecular genetics; protein conformation; protein tertiary structure; sequence homology; Bacteria (microorganisms); Bizionia; Flavobacterium; Amino Acid Sequence; Animals; Antarctic Regions; Bacterial Proteins; Binding Sites; Calcium; Circular Dichroism; Crystallography, X-Ray; Flavobacteriaceae; Metals; Models, Molecular; Molecular Sequence Data; Nuclear Magnetic Resonance, Biomolecular; Protein Conformation; Protein Stability; Protein Structure, Tertiary; Sequence Homology, Amino Acid
Año:2014
Volumen:82
Número:11
Página de inicio:3062
Página de fin:3078
DOI: http://dx.doi.org/10.1002/prot.24667
Título revista:Proteins: Structure, Function and Bioinformatics
Título revista abreviado:Proteins Struct. Funct. Bioinformatics
ISSN:08873585
CAS:calcium, 7440-70-2, 14092-94-5; Bacterial Proteins; Calcium; Metals
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08873585_v82_n11_p3062_Aran

Referencias:

  • Yi, H., Oh, H.M., Lee, J.H., Kim, S.J., Chun, J., Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic (2005) Int J Syst Evol Microbiol, 55, pp. 637-641
  • Bercovich, A., Vazquez, S.C., Yankilevich, P., Coria, S.H., Foti, M., Hernández, E., Vidal, A., Mac Cormack, W.P., Bizionia argentinensis sp. nov., isolated from marine water in Antarctica (2008) Int J Syst Evol Microbiol, 58, pp. 2363-2367
  • Lanzarotti, E., Pellizza, L., Bercovich, F.M., Coria, S., Vazquez, S., Ruberto, L., Hernández, E., Turjanski, A., Draft genome sequence of Bizionia argentinensis, isolated from Antarctic surface water (2011) J Bacteriol, 193, pp. 6797-6798
  • Levitt, M., Nature of the protein universe (2009) Proc Natl Acad Sci USA, 106, pp. 11079-11084
  • Kamil, K., Carlos, M.-A., Steven, C.A., Andras, F., Trends in structural coverage of the protein universe and the impact of the protein structure initiative (2014) Proc Natl Acad Sci USA, 111, pp. 3733-3738
  • Terwilliger, T.C., The success of structural genomics (2011) J Struct Funct Genomics, 12, pp. 43-44
  • Fajardo, J.E., Fiser, A., Protein structure-based prediction of catalytic residues (2013) BMC Bioinformatics, 14, p. 63
  • Stein, A., Céol, A., Aloy, P., 3did: identification and classification of domain-based interactions of known three-dimensional structure (2011) Nucleic Acids Res, 39 (Database issue), pp. D718-D723
  • Smal, C., Aran, M., Lanzarotti, E., Papouchado, M., Foti, M., Marti, M.A., Coria, S.H., Cicero, D.O., 1 H, 15 N and 13 C chemical shift assignments of the BA42 protein of the psychrophilic bacteria Bizionia argentinensis sp. nov (2012) Biomol NMR Assign, 6, pp. 181-183
  • Eletsky, A., Acton, T.B., Xiao, R., Everett, J.K., Montelione, G.T., Szyperski, T., Solution NMR structures reveal a distinct architecture and provide first structures for protein domain family PF04536 (2012) J Struct Funct Genomics, 13, pp. 9-14
  • Wu, H.-Y., Liu, M.-S., Lin, T.-P., Cheng, Y.-S., Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen (2011) Plan Physiol, 157, pp. 1015-1025
  • Sirpiö, S., Allahverdiyeva, Y., Suorsa, M., Paakkarinen, V., Vainonen, J., Battchikova, N., Aro, E.M., TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle (2007) Biochem J, 406, pp. 415-425
  • Cicero, D.O., Contessa, G.M., Paci, M., Bazzo, R., HACACO revisited: residual dipolar coupling measurements and resonance assignments in proteins (2006) J Magn Reson, 180, pp. 222-228
  • Ottiger, M., Delaglio, F., Bax, A., Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra (1998) J Magn Reson, 131, pp. 373-378
  • Eliseo, T., Ragona, L., Catalano, M., Assfalg, M., Paci, M., Zetta, L., Molinari, H., Cicero, D.O., Structural and dynamic determinants of ligand binding in the ternary complex of chicken liver bile acid binding protein with two identical bile salts revealed by NMR (2007) Biochemistry, 46, pp. 12557-12567
  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A., NMRPipe: a multidimensional spectral processing system based on UNIX pipes (1995) J Biomol NMR, 6, pp. 277-293
  • Johnson, B.A., Using NMRView to visualize and analyze the NMR spectra of macromolecules (2004) Methods Mol Biol, 278, pp. 313-352
  • Wu, D.H., Chen, A.D., Johnson, C.S., An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses (1995) J Magn Reson A, 115, pp. 260-264
  • Wilkins, D.K., Grimshaw, S.B., Receveur, V., Dobson, C.M., Jones, J.A., Smith, L.J., Hydrodynamic radii of native and denaturated proteins measured by pulse field gradient NMR techniques (1999) Biochemistry, 38, pp. 16424-16431
  • Kay, L.E., Torchia, D.A., Bax, A., Backbone dynamics of proteins as studied by 15 N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease (1989) Biochemistry, 28, pp. 8972-8979
  • Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W., Bax, A., Backbone dynamics of calmodulin studied by 15 N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible (1992) Biochemistry, 31, pp. 5269-5278
  • Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Clore, G.M., The Xplor-NIH NMR molecular structure determination package (2003) J Magn Reson, 160, pp. 65-73
  • O'Donoghue, S.I., King, G.F., Nigles, M., Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: the case of leucine zippers (1996) J Biomol NMR, 8, pp. 193-206
  • Clore, G.M., Gronenborn, A.M., New methods of structure refinement for macromolecular structure determination by NMR (1998) Proc Natl Acad Sci USA, 95, pp. 5891-5898
  • Tjandra, N., Bax, A., Direct measurement of distances and angles in biomolecules by NMR in dilute liquid crystalline medium (1997) Science, 278, pp. 1111-1114
  • Shen, Y., Delaglio, F., Cornilescu, G., Bax, A., TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts (2009) J Biomol NMR, 44, pp. 213-223
  • Vriend, G., WHAT IF: a molecular modeling and drug design program (1990) J Mol Graph, 8, pp. 52-56
  • Losonczi, J.A., Andrec, M., Fischer, M.W., Prestegard, J.H., Order matrix analysis of residual dipolar couplings using singular value decomposition (1999) J Magn Reson, 138, pp. 334-342
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Kollman, P., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations (2003) J Comput Chem, 24, pp. 1999-2012
  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation (2008) J Chem Theory Comput, 4, pp. 435-447
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J Chem Phys, 79, pp. 926-935
  • Kabsch, W., Integration, scaling, space-group assignment and post-refinement (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 125-132
  • Navaza, J.A., AMoRe: an automated package for molecular replacement (1994) Acta Crystallogr Sect A, 50, pp. 157-163
  • Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W., Roversi, P., Womack, T.O., (2011) BUSTER version X.Y.Z, , Cambridge, United Kingdom: Global Phasing, Ltd
  • Chen, V.B., Arendall, W.B., Headd, J.J., III, Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: all-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 12-21
  • Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., Features and development of Coot (2010) Acta Crystallogr D Biol Crystallogr, 66, pp. 486-501
  • Lin, M., Larive, C.K., Detection of insulin aggregates with pulsed-field gradient nuclear magnetic resonance spectroscopy (1995) Anal Biochem, 229, pp. 214-220
  • Wilkins, D.K., Grimshaw, S.B., Receveur, V., Dobson, C.M., Jones, J.A., Smith, L.J., Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques (1999) Biochemistry, 38, pp. 16424-16431
  • Daragan, V.A., Mayo, K.H., Motional model analyses of protein and peptide dynamics using 13 C and 15 N NMR relaxation (1997) Prog Nucl Magn Reson Spectrosc, 31, pp. 63-105
  • García de la Torre, J., Huertas, M.L., Carrasco, B., HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations (2000) J Magn Reson, 147, pp. 138-146
  • Ryabov, Y., Clore, G.M., Direct use of 15 N relaxation rates as experimental restraints on molecular shape and orientation for docking of protein-protein complexes (2010) J Am Chem Soc, 132, pp. 5987-5989
  • Cheng, H., Grishin, N.V., DOM-fold: a structure with crossing loops found in DmpA, ornithine acetyltransferase, and molybdenum cofactor-binding domain (2005) Protein Sci, 14, pp. 1902-1920
  • Grishin, N.V., Phosphatidylinositol phosphate kinase: a link between protein kinase and glutathione synthase folds (1999) J Mol Biol, 291, pp. 239-247
  • Finkelstein, A.V., Ptitsyn, O.B., Why do globular proteins fit the limited set of folding patterns? (1987) Prog Biophys Mol Biol, 50, pp. 171-190
  • Finkelstein, A.V., Gutun, A.M., Badretdinov, A., Why are the same protein folds used to perform different functions? (1993) FEBS Lett, 325, pp. 23-28
  • Holm, L., Rosenström, P., Dali server: conservation mapping in 3D (2012) Nucl Acids Res, 38, pp. W545-W549
  • Boulin, T., Rapti, G., Briseño-Roa, L., Stigloher, C., Richmond, J.E., Paoletti, P., Bessereau, J.-L., Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit (2012) Nat Neurosci, 15, pp. 1374-1381
  • Cole, B.J., Bystroff, C., Alpha helical crossovers favor right-handed supersecondary structures by kinetic trapping: the phone cord effect in protein folding (2009) Protein Sci, 18, pp. 1602-1608
  • Grainger, B., Sadowski, M.L., Tayler, W.R., Re-evaluating the "rules" of protein topology (2010) J Comp Biol, 17, pp. 1371-1384
  • Spagnolo, L., Töro, I., D'Orazio, M., O'Neill, P., Pederse, J.Z., Carugo, O., Rotilio, G., Djinović-Carugo, K., Unique features of the sodC-encoded superoxide dismutase from Mycobacterium tuberculosis, a fully functional copper-containing enzyme lacking zinc in the active site (2004) J Biol Chem, 279, pp. 33447-33455
  • Scheef, E.D., Bourne, P.E., Structural evolution of the protein kinase-like superfamily (2005) PLOS Comp Biol, 1, pp. 359-381
  • Taylor, S.S., Radzio-Andzelm, E., Three protein kinase structures define a common motif (1994) Structure, 2, pp. 345-355
  • Russell, N.J., Psychrophilic bacteria-molecular adaptations of membrane lipids (1997) Comp Biochem Physiol A Physiol, 118, pp. 489-493
  • Galtier, N., Lobry, J.R., Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes (1997) J Mol Evol, 44, pp. 632-636
  • Khachane, A.N., Timmis, K.N., dos Santos, V.A., Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures (2005) Nucleic Acids Res, 33, pp. 4016-4022
  • D'Amico, S., Sohier, J.S., Feller, G., Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase (2006) J Mol Biol, 358, pp. 1296-1304
  • Feller, G., Life at low temperatures: is disorder the driving force? (2007) Extremophiles, 11, pp. 211-216
  • D'Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M.-A., Gerady, C., Molecular basis of cold adaptation (2002) Philos Trans R Soc Lond B, 357, pp. 917-925
  • Bentahir, M., Feller, G., Aittaleb, M., Lamotte-Brasseur, J., Himri, T., Chessa, J.P., Gerday, C., Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18 (2000) J Biol Chem, 275, pp. 11147-11153
  • Linse, S., Helmersson, A., Forsen, S., Calcium binding to calmodulin and its globular domains (1991) J Biol Chem, 266, pp. 8050-8054

Citas:

---------- APA ----------
Aran, M., Smal, C., Pellizza, L., Gallo, M., Otero, L.H., Klinke, S., Goldbaum, F.A.,..., Cicero, D.O. (2014) . Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain. Proteins: Structure, Function and Bioinformatics, 82(11), 3062-3078.
http://dx.doi.org/10.1002/prot.24667
---------- CHICAGO ----------
Aran, M., Smal, C., Pellizza, L., Gallo, M., Otero, L.H., Klinke, S., et al. "Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain" . Proteins: Structure, Function and Bioinformatics 82, no. 11 (2014) : 3062-3078.
http://dx.doi.org/10.1002/prot.24667
---------- MLA ----------
Aran, M., Smal, C., Pellizza, L., Gallo, M., Otero, L.H., Klinke, S., et al. "Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain" . Proteins: Structure, Function and Bioinformatics, vol. 82, no. 11, 2014, pp. 3062-3078.
http://dx.doi.org/10.1002/prot.24667
---------- VANCOUVER ----------
Aran, M., Smal, C., Pellizza, L., Gallo, M., Otero, L.H., Klinke, S., et al. Solution and crystal structure of BA42, a protein from the Antarctic bacterium Bizionia argentinensis comprised of a stand-alone TPM domain. Proteins Struct. Funct. Bioinformatics. 2014;82(11):3062-3078.
http://dx.doi.org/10.1002/prot.24667