Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The subfilter-scale (SFS) physics of regularization models are investigated to understand the regularizations' performance as SFS models. Suppression of spectrally local SFS interactions and conservation of small-scale circulation in the Lagrangian-averaged Navier-Stokes α-model (LANS-α) is found to lead to the formation of rigid bodies. These contaminate the superfilter-scale energy spectrum with a scaling that approaches k +1 as the SFS spectra is resolved. The Clark-α and Leray-α models, truncations of LANS-α, do not conserve small-scale circulation and do not develop rigid bodies. LANS-α, however, is closest to Navier-Stokes in intermittency properties. All three models are found to be stable at high Reynolds number. Differences between L 2 and H 1 norm models are clarified. For magnetohydrodynamics (MHD), the presence of the Lorentz force as a source (or sink) for circulation and as a facilitator of both spectrally nonlocal large to small scale interactions as well as local SFS interactions prevents the formation of rigid bodies in Lagrangian-averaged MHD (LAMHD-α). LAMHD-α performs well as a predictor of superfilter-scale energy spectra and of intermittent current sheets at high Reynolds numbers. It may prove generally applicable as a MHD-LES. © 2010 Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:The effect of subfilter-scale physics on regularization models
Autor:Pietarila Graham, J.; Holm, D.D.; Mininni, P.; Pouquet, A.
Filiación:Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany
Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
Department of Mathematics, Imperial College London, London, United Kingdom
National Center for Atmospheric Research, Boulder, CO, United States
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Alpha models; Intermittency; LES; MHD; Subgrid-scale processes; Alpha model; Current sheets; Energy spectra; High Reynolds number; Intermittency; LES; Navier Stokes; Nonlocal; Regularization models; Rigid body; Small scale; Subfilter scale; Subgrid scale; Three models; Filters (for fluids); Lagrange multipliers; Local area networks; Lorentz force; Navier Stokes equations; Reynolds number; Rigid structures; Spectroscopy; Magnetohydrodynamics
Año:2011
Volumen:49
Número:1
Página de inicio:21
Página de fin:34
DOI: http://dx.doi.org/10.1007/s10915-010-9428-4
Título revista:Journal of Scientific Computing
Título revista abreviado:J Sci Comput
ISSN:08857474
CODEN:JSCOE
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_08857474_v49_n1_p21_PietarilaGraham.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08857474_v49_n1_p21_PietarilaGraham

Referencias:

  • Alexakis, A., Mininni, P.D., Pouquet, A., Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence (2005) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72 (4), pp. 1-10. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRE:72, DOI 10.1103/PhysRevE.72.046301, 046301
  • Aluie, H., Eyink, G.L., Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter (2009) Phys. Fluids, 21 (11), p. 115108. , 10.1063/1.3266948
  • Aluie, H., Eyink G., .L., (2009) Scale-locality of Magnetohydrodynamic Turbulence, , ArXiv e-prints
  • Baerenzung, J., Politano, H., Ponty, Y., Pouquet, A., Spectral modeling of magnetohydrodynamic turbulent flows (2008) Phys. Rev. e, 78 (2), p. 026310. , 2495473 10.1103/PhysRevE.78.026310
  • Berselli, L.C., Grisanti, C.R., On the consistency of the rational large eddy simulation model (2004) Comput. Vis. Sci., 6 (23), pp. 75-82. , 2061268 02132411
  • Brachet M., .E., Mininni P., .D., Rosenberg D., .L., Pouquet, A., (2008) High-order Low-storage Explicit Runge-Kutta Schemes for Equations with Quadratic Nonlinearities, , ArXiv e-prints
  • Canuto, C., Yousuff Hussaini, M., Quarteroni, A., Zang, T.A., (1988) Spectral Methods in Fluid Dynamics, , Springer New York 0658.76001
  • Cao, C., Holm, D.D., Titi, E.S., On the Clark-α model of turbulence: Global regularity and long-time dynamics (2005) Journal of Turbulence, 6. , http://journalsonline.tandf.co.uk/openurl.asp?genre=article&eissn= 1468-5248&volume=6&issue=19&spage=1, DOI 10.1080/14685240500183756
  • Chandy, A., Frankel, S., Regularization-based sub-grid scale (SGS) models for large eddy simulations (LES) of high-Re decaying isotropic turbulence (2009) J. Turbul., 10, p. 25. , 2546626 10.1080/14685240902998215
  • Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., Camassa-Holm equations as a closure model for turbulent channel and pipe flow (1998) Physical Review Letters, 81 (24), pp. 5338-5341
  • Chollet Jean Pierre, Lesieur Marcel, PARAMETERIZATION OF SMALL SCALES OF THREE-DIMENSIONAL ISOTROPIC TURBULENCE UTILIZING SPECTRAL CLOSURES (1981) Journal of the Atmospheric Sciences, 38 (12), pp. 2747-2757
  • Cichowlas, C., Bonaiti, P., Debbasch, F., Brachet, M., Effective dissipation and turbulence in spectrally truncated euler flows (2005) Physical Review Letters, 95 (26), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.264502, 264502
  • Dahlburg, J.P., Montgomery, D., Doolen, G.D., Matthaeus, W.H., Large-scale disruptions in a current-carrying magnetofluid (1986) J. Plasma Phys., 35, pp. 1-42. , 10.1017/S0022377800011120
  • Foias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Physica D: Nonlinear Phenomena, 152-153, pp. 505-519. , DOI 10.1016/S0167-2789(01)00191-9, PII S0167278901001919
  • Galdi, G.P., Layton, W.J., Approximation of the larger eddies in fluid motions. II: A model for space-filtered flow (2000) Math. Models Methods Appl. Sci., 10, pp. 343-350. , 1753115 1077.76522
  • Galloway, D., Frisch, U., Dynamo action in a family of flows with chaotic streamlines (1986) Geophys. Astrophys. Fluid Dyn., 36, pp. 53-83. , 854158 10.1080/03091928608208797
  • Geurts, B.J., Holm, D.D., Regularization modeling for large-eddy simulation (2003) Physics of Fluids, 15 (1), pp. L13-L16. , DOI 10.1063/1.1529180
  • Geurts, B.J., Holm, D.D., Leray and LANS-α modelling of turbulent mixing (2006) Journal of Turbulence, 7, pp. 1-33. , http://journalsonline.tandf.co.uk/openurl.asp?genre=article&eissn= 1468-5248&volume=7&issue=10&spage=1, DOI 10.1080/14685240500501601
  • Goldreich, P., Sridhar, S., Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence (1995) Astrophys. J., 438, pp. 763-775. , 10.1086/175121
  • Gomez, D.O., Mininni, P.D., Dmitruk, P., MHD simulations and astrophysical applications (2005) Advances in Space Research, 35 (5), pp. 899-907. , DOI 10.1016/j.asr.2005.02.099, PII S0273117705004734, Fundamentals of Space Environment Science
  • Gomez, D.O., Mininni, P.D., Dmitruk, P., Parallel simulations in turbulent MHD (2005) Physica Scripta T, T116, pp. 123-127. , DOI 10.1238/Physica.Topical.116a00123, International Workshop on Theoretical Plasma Physics: Modern Plasma Science
  • Guermond, J.-L., On the use of the notion of suitable weak solutions in CFD (2008) Int. J. Numer. Methods Fluids, 57, pp. 1153-1170. , 2435087 1140.76365 10.1002/fld.1853
  • Holm, D.D., Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics (2002) Physica D, Nonlinear Phenom., 170, pp. 253-286. , 1925799 1098.76547 10.1016/S0167-2789(02)00552-3
  • Holm, D.D., Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics (2002) Chaos, 12, pp. 518-530. , 1907663 1080.76504 10.1063/1.1460941
  • Holm, D.D., Marsden, J.E., Ratiu, T.S., The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories (1998) Advances in Mathematics, 137 (1), pp. 1-81. , DOI 10.1006/aima.1998.1721, PII S0001870898917212
  • Hughes, T.J.R., Mazzei, L., Oberai, A.A., Wray, A.A., The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence (2001) Physics of Fluids, 13 (2), pp. 505-512. , DOI 10.1063/1.1332391
  • Iroshnikov, P.S., Turbulence of a conducting fluid in a strong magnetic field (1964) Soviet Astron., 7, p. 566. , 180086
  • John, V., An assessment of two models for the subgrid scale tensor in the rational les model (2005) Journal of Computational and Applied Mathematics, 173 (1), pp. 57-80. , DOI 10.1016/j.cam.2004.02.022, PII S0377042704001347
  • Kim, T.-Y., Cassiani, M., Albertson, J.D., Dolbow, J.E., Fried, E., Gurtin, M.E., Impact of the inherent separation of scales in the Navier-Stokes-α β equations (2009) Phys. Rev. e, 79 (4), p. 045307. , 2551221 10.1103/PhysRevE.79.045307
  • Knaepen, B., Moin, P., Large-eddy simulation of conductive flows at low magnetic Reynolds number (2004) Physics of Fluids, 16 (5), pp. 1255-1261. , DOI 10.1063/1.1651484
  • Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence (1965) Phys. Fluids, 8, pp. 1385-1387. , 192728 10.1063/1.1761412
  • Labovschii, A., Trenchea, C., Approximate deconvolution models for magnetohydrodynamics (2010) Technical Report, , University of Pittsburgh
  • Larios, A., Titi E., .S., (2009) On the Higher-order Global Regularity of the Inviscid Voigt-regularization of Three-dimensional Hydrodynamic Models, , ArXiv e-prints
  • Lax, P.D., Richtmyer, R.D., Survey of the stability of linear finite difference equations (1956) Commun. Pure Appl. Math., 9, pp. 267-293. , 79204 0072.08903 10.1002/cpa.3160090206
  • Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Rosenberg, D., Lack of universality in decaying magnetohydrodynamic turbulence (2010) Phys. Rev. e, 81 (1), p. 016318. , 10.1103/PhysRevE.81.016318
  • Levant, B., Ramos, F., Titi E., .S., (2009) On the Statistical Properties of the 3D Incompressible Navier-Stokes-Voigt Model, , ArXiv e-prints
  • Mason, J., Cattaneo, F., Boldyrev, S., Numerical measurements of the spectrum in magnetohydrodynamic turbulence (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (3), p. 036403. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.036403&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.036403
  • Meneveau, C., Katz, J., Scale-invariance and turbulence models for large-eddy simulation (2000) Annual Review of Fluid Mechanics, 32, pp. 1-32. , DOI 10.1146/annurev.fluid.32.1.1
  • Mininni, P.D., Alexakis, A., Pouquet, A., Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws (2008) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (3), p. 036306. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.77.036306&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.77.036306
  • Mininni, P.D., Montgomery, D.C., Pouquet, A., Numerical solutions of the three-dimensional magnetohydrodynamic α model (2005) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71 (4), pp. 046304/1-046304/11. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PLEEE8000071000004046304000001&idtype=cvips, DOI 10.1103/PhysRevE.71.046304, 046304
  • Mininni, P.D., Montgomery, D.C., Pouquet, A.G., A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows (2005) Physics of Fluids, 17 (3), pp. 0351121-03511217. , DOI 10.1063/1.1863260, 035112
  • Mohseni, K., Kosovic, B., Shkoller, S., Marsden, J.E., Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence (2003) Physics of Fluids, 15 (2), pp. 524-544. , DOI 10.1063/1.1533069
  • Montgomery, D.C., Pouquet, A., An alternative interpretation for the Holm "alpha model" (2002) Phys. Fluids, 14 (9), pp. 3365-3366. , 1921581 10.1063/1.1501542
  • Muller, W.-C., Carati, D., Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamic turbulence (2002) Physics of Plasmas, 9 (3), p. 824. , DOI 10.1063/1.1448498
  • Graham, J.P., Holm, D.D., Mininni, P.D., Pouquet, A., Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes α model and their large-eddy-simulation potential (2007) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 76 (5), p. 056310. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.76.056310&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.76.056310
  • Graham, J.P., Holm, D.D., Mininni, P., Pouquet, A., Inertial range scaling, Kármán-Howarth theorem, and intermittency for forced and decaying Lagrangian averaged magnetohydrodynamic equations in two dimensions (2006) Physics of Fluids, 18 (4), p. 045106. , DOI 10.1063/1.2194966
  • Graham, J.P., Holm, D.D., Mininni, P.D., Pouquet, A., Three regularization models of the Navier-Stokes equations (2008) Physics of Fluids, 20 (3), p. 035107. , DOI 10.1063/1.2880275
  • Pietarila Graham, J., Mininni, P.D., Pouquet, A., Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks (2009) Phys. Rev. e, 80 (1), p. 016313. , 10.1103/PhysRevE.80.016313
  • Ponty, Y., Politano, H., Pinton, J.-F., Simulation of induction at low magnetic Prandtl number (2004) Phys. Rev. Lett., 92 (14), p. 144503. , 10.1103/PhysRevLett.92.144503
  • Ramos, F., Titi E., .S., (2009) Invariant Measures for the 3D Navier-Stokes-Voigt Equations and Their Navier-Stokes Limit, , ArXiv e-prints
  • Taylor, G.I., Green, A.E., Mechanism of the production of small eddies from large ones (1937) Proc. R. Soc. Lond. A, 158, p. 499. , JFM 63.1358.03 10.1098/rspa.1937.0036
  • Theobald, M.L., Fox, P.A., Sofia, S., A subgrid-scale resistivity for magnetohydrodynamics (1994) Phys. Plasmas, 1, pp. 3016-3032. , 10.1063/1.870542
  • Van Reeuwijk, M., Jonker, H.J.J., Hanjalić, K., Leray-α simulations of wall-bounded turbulent flows (2009) Int. J. Heat Fluid Flow, 30, p. 1044. , 10.1016/j.ijheatfluidflow.2009.08.001

Citas:

---------- APA ----------
Pietarila Graham, J., Holm, D.D., Mininni, P. & Pouquet, A. (2011) . The effect of subfilter-scale physics on regularization models. Journal of Scientific Computing, 49(1), 21-34.
http://dx.doi.org/10.1007/s10915-010-9428-4
---------- CHICAGO ----------
Pietarila Graham, J., Holm, D.D., Mininni, P., Pouquet, A. "The effect of subfilter-scale physics on regularization models" . Journal of Scientific Computing 49, no. 1 (2011) : 21-34.
http://dx.doi.org/10.1007/s10915-010-9428-4
---------- MLA ----------
Pietarila Graham, J., Holm, D.D., Mininni, P., Pouquet, A. "The effect of subfilter-scale physics on regularization models" . Journal of Scientific Computing, vol. 49, no. 1, 2011, pp. 21-34.
http://dx.doi.org/10.1007/s10915-010-9428-4
---------- VANCOUVER ----------
Pietarila Graham, J., Holm, D.D., Mininni, P., Pouquet, A. The effect of subfilter-scale physics on regularization models. J Sci Comput. 2011;49(1):21-34.
http://dx.doi.org/10.1007/s10915-010-9428-4