Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the arithmetic complexity of the linear programming feasibility problem over the reals. For the case of polyhedra defined by 2 n half-spaces in Rn we prove that the set I(2 n, n), of parameters describing nonempty polyhedra, has an exponential number of limiting hypersurfaces. From this geometric result we obtain, as a corollary, the existence of a constant c > 1 such that, if dense or sparse representation is used to code polynomials, the length of any quantifier-free formula expressing the set I(2 n, n) is bounded from below by Ω (cn). Other related complexity results are stated; in particular, a lower bound for algebraic computation trees based on the notion of limiting hypersurface is presented. © 2008 Elsevier Inc. All rights reserved.

Registro:

Documento: Artículo
Título:Some lower bounds for the complexity of the linear programming feasibility problem over the reals
Autor:Grimson, R.; Kuijpers, B.
Filiación:Theoretical Computer Science Group, Hasselt University, Transnational University of Limburg, Belgium
Departamento de Matemática, Universidad de Buenos Aires, Argentina
Palabras clave:Algebraic complexity; Elimination theory; Limiting hypersurface; Linear programming; Lower bounds; Algebra; Geometry; Linear programming; Algebraic complexity; Algebraic computations; Arithmetic complexity; Elimination theory; Feasibility problem; Limiting hypersurface; Lower bounds; Sparse representation; C (programming language)
Año:2009
Volumen:25
Número:1
Página de inicio:25
Página de fin:37
DOI: http://dx.doi.org/10.1016/j.jco.2008.07.002
Título revista:Journal of Complexity
Título revista abreviado:J. Complexity
ISSN:0885064X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0885064X_v25_n1_p25_Grimson

Referencias:

  • Avendaño, M., Krick, T., Sombra, M., Factoring bivariate sparse (lacunary) polynomials (2007) J. Complexity, 23 (2), pp. 193-216
  • S. Basu, R. Pollack, M.F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, in: IEEE Symposium on Foundations of Computer Science, 1994, pp. 632-641; Basu, S., Pollack, R., Roy, M.F., (2006) Algorithms in Real Algebraic Geometry, , Springer-Verlag, New York
  • M. Ben-Or, Lower bounds for algebraic computation trees, in: STOC'83: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, 1983, pp. 80-86; Ben-Or, M., Kozen, D., Reif, J., The complexity of elementary algebra and geometry (1984) STOC'84: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 457-464. , ACM
  • Bochnak, J., Coste, M., Roy, M.F., (1998) Real Algebraic Geometry, , Springer-Verlag
  • Brown, C.W., Davenport, J.H., The complexity of quantifier elimination and cylindrical algebraic decomposition (2007) ISSAC'07: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 54-60. , ACM, New York, USA
  • Bürgisser, P., Lower bounds and real algebraic geometry (2001) Mathematics and Computer Science, pp. 35-54. , Algorithmic and Quantitative Aspects of Real Algebraic Geometry, AMS
  • Bürgisser, P., Clausen, M., Shokrollahi, M.A., (1997) Algebraic Complexity Theory, , Springer-Verlag
  • Castro, D., Giusti, M., Heintz, J., Matera, G., Pardo, L.M., The hardness of polynomial equation solving (2003) Found. Comput. Math., 3, pp. 1-74
  • Collins, G.E., Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition (1975) Automata Theory and Formal Languages, pp. 134-183. , Springer-Verlag
  • Davenport, J.H., Heintz, J., Real quantifier elimination is doubly exponential (1988) J. Symbolic Comput., 5, pp. 29-35
  • M.J. Fischer, M.O. Rabin, Super-exponential complexity of Presburger arithmetic, in: SIAMAMS: Complexity of Computation: Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics, 1974; Fitchas, N., Galligo, A., Morgenstern, J., Algorithmes rapides en sequentiel et en paralléle pour l'èlimination de quantificateurs en gèomètrie èlèmentaire (1990) Seminaire sur les Structures Algebraiques Ordonnees, pp. 103-145. , Delon F., Dickmann M., and Gondard D. (Eds), Pub. Math. Uni, Paris
  • Giusti, M., Heintz, J., (2001) London Mathematical Society Lecture Notes, 284, pp. 69-104. , Cambridge University Press
  • Grigoriev, D., Vorobjov, N., Solving systems of polynomial inequalities in subexponential time (1988) J. Symbolic Comput., 5 (1-2), pp. 37-64
  • Heintz, J., Kuijpers, B., Constraint data bases, data structures and efficient query elimination (2004) Constraint Databases: Proceedings of the 1st International Symposium Applications of Constraint Databases, pp. 1-25. , Kuijpers B., and Revesz P. (Eds). CDB'04, Springer-Verlag
  • Heintz, J., Matera, G., Pardo, L.M., Wachenchauzer, R., The intrinsic complexity of parametric elimination methods (1998) Electron. J. SADIO, 1, pp. 37-51
  • Heintz, J., Morgenstern, J., On the intrinsic complexity of elimination theory (1993) J. Complexity, 9 (4), pp. 471-498
  • Heintz, J., Roy, M.F., Solernó, P., On the theoretical and practical complexity of the existential theory of reals (1993) Comput. J., 36 (5), pp. 427-431
  • Khachiyan, L.G., A polynomial algorithm in linear programming (1979) Soviet Math. Dokl., 20, pp. 191-194
  • Koiran, P., Circuits versus trees in algebraic complexity (2000) STACS'00: Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, pp. 35-52. , Springer-Verlag
  • Lazard, D., Quantifier elimination: Optimal solution for two classical examples (1988) J. Symbolic Comput., 5, pp. 261-266
  • T. Lickteig, On semialgebraic decision complexity, Technical Report TR-90-052, in: Int. Comp. Sc. Inst, Berkeley 1990, Habilitationsschrift, Universitat Tubingen; Lickteig, T., Semi-algebraic decision complexity, the real spectrum, and degree (1996) J. Pure Appl. Algebra, 110, pp. 131-184
  • L. Monk, An elementary-recursive decision procedure for T h (R, +, {dot operator}), UC, Berkeley, 1974, manuscript; Montaña, J.L., Pardo, L.M., Lower bounds for arithmetic networks (1993) Appl. Algebra Engrg. Comm. Comput., 4, pp. 1-24
  • Padberg, M., (1995) Linear Optimization and Extensions, , Springer-Verlag, Berlin
  • Renegar, J., On the computational complexity and geometry of the first-order theory of the reals (I, II and III) (1992) J. Symbolic Comput., 13 (3), pp. 255-352
  • Smale, S., Mathematical problems for the next century (2000) Mathematics: Frontiers and Perspectives, , Arnold V., Atiyah M., Lax P., and Mazur B. (Eds), IMU, AMS
  • Strassen, V., The computational complexity of continued fractions (1983) SIAM J. Compl., 12, pp. 1-27
  • Tarski, A., (1951) A Decision Method for Elementary Algebra and Geometry, , Univ. of California Press, Berkley, CA
  • Weispfenning, V., The complexity of linear problems in fields (1988) J. Symbolic Comput., 5, pp. 3-27
  • Wüthrich, H.R., Ein Entscheidungsverfahren für die Theorie der reellabgeschlossenen Körper (1976) LNCS, 43, pp. 138-162. , Komplexität von Entscheidungsproblemen, Ein Seminar. Specker E., and Strassen V. (Eds), Springer-Verlag

Citas:

---------- APA ----------
Grimson, R. & Kuijpers, B. (2009) . Some lower bounds for the complexity of the linear programming feasibility problem over the reals. Journal of Complexity, 25(1), 25-37.
http://dx.doi.org/10.1016/j.jco.2008.07.002
---------- CHICAGO ----------
Grimson, R., Kuijpers, B. "Some lower bounds for the complexity of the linear programming feasibility problem over the reals" . Journal of Complexity 25, no. 1 (2009) : 25-37.
http://dx.doi.org/10.1016/j.jco.2008.07.002
---------- MLA ----------
Grimson, R., Kuijpers, B. "Some lower bounds for the complexity of the linear programming feasibility problem over the reals" . Journal of Complexity, vol. 25, no. 1, 2009, pp. 25-37.
http://dx.doi.org/10.1016/j.jco.2008.07.002
---------- VANCOUVER ----------
Grimson, R., Kuijpers, B. Some lower bounds for the complexity of the linear programming feasibility problem over the reals. J. Complexity. 2009;25(1):25-37.
http://dx.doi.org/10.1016/j.jco.2008.07.002