Artículo

Dillon, M.E.; Skabar, Y.G.; Ruiz, J.; Kalnay, E.; Collini, E.A.; Echevarría, P.; Saucedo, M.; Miyoshi, T.; Kunii, M. "Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics" (2016) Weather and Forecasting. 31(1):217-236
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN. © 2016 American Meteorological Society.

Registro:

Documento: Artículo
Título:Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics
Autor:Dillon, M.E.; Skabar, Y.G.; Ruiz, J.; Kalnay, E.; Collini, E.A.; Echevarría, P.; Saucedo, M.; Miyoshi, T.; Kunii, M.
Filiación:CONICET, National Meteorological Service, Buenos Aires, Argentina
Department of Atmospheric and Oceanic Science, Universidad de Buenos Aires, Buenos Aires, Argentina
UMI-IFAECI, Buenos Aires, Argentina
CIMA, CONICET, Department of Atmospheric and Oceanic Science, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD, United States
Naval Hydrographic Service, Buenos Aires, Argentina
National Meteorological Service, Buenos Aires, Argentina
RIKEN Advanced Institute for Computational Science, Kobe, Japan
Meteorological Research Institute, Tsukuba, Japan
Palabras clave:Data assimilation; Forecasting; Kalman filters; Mathematical and statistical techniques; Model evaluation/performance; Model initialization; Models and modeling; Numerical weather prediction/forecasting; Boundary layers; Data acquisition; Forecasting; Kalman filters; Meteorology; Numerical models; Quality control; Data assimilation; Model evaluation/performance; Model initialization; Numerical weather prediction/forecasting; Statistical techniques; Weather forecasting; data assimilation; ensemble forecasting; Kalman filter; numerical model; performance assessment; sensitivity analysis; weather forecasting; South America
Año:2016
Volumen:31
Número:1
Página de inicio:217
Página de fin:236
DOI: http://dx.doi.org/10.1175/WAF-D-14-00157.1
Título revista:Weather and Forecasting
Título revista abreviado:Weather Forecast.
ISSN:08828156
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08828156_v31_n1_p217_Dillon

Referencias:

  • Amitai, E., Petersen, W., Llort, X., Vasiloff, S., Multiplatform comparisons of rain intensity for extreme precipitation events (2011) IEEE Trans. Geosci. Remote Sens, 50, pp. 675-686
  • Anderson, J.L., Anderson, S.L., A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts (1999) Mon. Wea. Rev, 127, pp. 2741-2758
  • Azevedo, H., de Goncalves, L.G., Observing system experiment in the CPTEC/INPE 3D-Var data assimilation system (2015) Fourth Int. Symp. on Data Assimilation, , http://data-assimilation.jp/isda2015/program/abstract.php?id=P-19, Kobe, Japan, RIKEN Advanced Institute for Computational Science, P-19
  • Buehner, M., Shlyaeva, A., Scale-dependent covariance localization for EnVar data assimilation (2015) Fourth Int. Symp. on Data Assimilation, , http://data-assimilation.jp/isda2015/program/pdf/8-1.pdf, Kobe, Japan, RIKEN Advanced Institute for Computational Science, 8-1
  • Chen, F., Dudhia, J., Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model description and implementation (2001) Mon. Wea. Rev, 129, pp. 569-585
  • Cressman, G.P., An operational objective analysis system (1959) Mon. Wea. Rev, 87, pp. 367-374
  • da Silva, A.M., Pfaendtner, J., Guo, J., Sienkiewicz, M., Cohn, S., Assessing the effects of data selection with DAO's Physical-Space Statistical Analysis System (1995) Proc. Second Int. Symp. on Assimilation of Observation in Meteorology and Oceanography, , Tokyo, Japan, WMO/TD.651
  • de Goncalves, L.G., Azevedo, H., Study of the impact of satellite data, radiosondes and GPS in a SACZ episode using G3DVar (2015) Fourth Int. Symp. on Data Assimilation, , http://data-assimilation.jp/isda2015/program/abstract.php?id=P-20, Kobe, Japan, RIKEN Advanced Institute for Computational Science, P-20
  • Dillon, M.E., Garcia Skabar, Y., Nicolini, M., Desempeño del pronóstico de modelos de alta resolución, en un área limitada: Análisis de la estación de verano 2010-2011 (2013) Meteorológica, 38, pp. 69-89
  • Du, J., DiMego, G., Zhou, B., Jovic, D., Ferrier, B., Yang, B., Benjamin, S., NCEP regional ensembles: Evolving toward hourly-updated convection-allowing scale and storm-scale predictions within a unified regional modeling system (2014) Proc. 22nd Conf. on Numerical Weather Prediction/26th Conf. on Weather Analysis and Forecasting, , https://ams.confex.com/ams/94Annual/webprogram/Paper239030.html, Atlanta, GA, Amer. Meteor. Soc., J1.4
  • Dudhia, J., Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale twodimensional model (1989) J. Atmos. Sci, 46, pp. 3077-3107
  • Gandin, L.S., (1963) Objective Analysis of Meteorological Fields (in Russian), p. 242. , Hydrometeoizdat
  • García Skabar, Y., Nicolini, M., Enriched analyses with assimilation of SALLJEX data (2009) J. Appl. Meteor. Climatol, 48, pp. 2425-2440
  • Grell, G.A., Devenyi, D., A generalized approach to parameterizing convection combining ensemble and data assimilation techniques (2002) Geophys. Res. Lett, 29, p. 1693
  • Hamrud, M., Bonavita, M., Isaksen, L., (2014) EnKF and hybrid gain ensemble data assimilation, p. 36. , ECMWF Tech. Memo. 733
  • Herdies, D.L., Ferreira, S.H., Bonatti, J.P., Cintra, R., da Silva, A., O sistema de assimilaçao de dados atmosféricos global do CPTEC/INPE (2002) XII Congresso Brasileiro de Meteorologia, pp. 4028-4033. , Foz de Iguaçu, Brazil, Sociedade Brasileira de Meteorologia
  • Herdies, D.L., Aravéquia, J.A., Ferreira, S.H., Andreoli, R.V., Sapucci, L.F., Mattos, J.G.Z., (2007) Assimilaçao de dados no CPTEC/INPE (Data assimilation in CPTEC/INPE), p. 12. , assimila.cptec.inpe.br/~rassmla/pubs/pub_r09.pdf
  • Hong, S.-Y., Lim, J.-O.J., The WRF single-moment 6-class microphysics scheme (WSM6) (2006) J. Korean Meteor. Soc, 42, pp. 129-151
  • Hong, S.-Y., Noh, Y., Dudhia, J., A new vertical diffusion package with an explicit treatment of entrainment processes (2006) Mon. Wea. Rev, 134, pp. 2318-2341
  • Houtekamer, P.L., Lefaivre, L., Derome, J., Ritchie, H., Mitchell, H.L., A system simulation approach to ensemble prediction (1996) Mon. Wea. Rev, 124, pp. 1225-1242
  • Houtekamer, P.L., Deng, X., Mitchell, H.L., Baek, S.J., Gagnon, N., Higher resolution in an operational ensemble Kalman filter (2014) Mon. Wea. Rev, 142, pp. 1143-1162
  • Huffman, G.J., Bolvin, D.T., (2013) TRMM and other data precipitation data set documentation, p. 42. , ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf, NASA Goddard Space Flight Center
  • Huffman, G.J., The TRMMMultisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales (2007) J. Hydrometeor, 8, pp. 38-55
  • Hunt, B.R., Kostelich, E.J., Szunyogh, I., Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter (2007) PhysicaD, 230, pp. 112-126
  • Janjic, Z.I., The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes (1994) Mon. Wea. Rev, 122, pp. 927-945
  • Janjic, Z.I., (2002) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model, p. 61. , NCEP Office Note 437
  • Jones, T.A., Stensrud, D.J., Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts (2012) Wea. Forecasting, 27, pp. 541-564
  • Kain, J.S., The Kain-Fritsch convective parameterization: An update (2004) J. Appl. Meteor, 43, pp. 170-181
  • Kalnay, E., (2003) Atmospheric Modeling, Data Assimilation and Predictability, p. 341. , Cambridge University Press
  • Kalnay, E., Yang, S.-C., Accelerating the spin-up of ensemble Kalman filtering (2010) Quart. J. Roy. Meteor. Soc, 136, pp. 1644-1651
  • Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., Ballabrera-Poy, J., 4D-Var or ensemble Kalman filter? (2007) Tellus, 59A, pp. 758-773
  • Keyser, D., (2013) PREPBUFR processing at NCEP, , http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm, NOAA/NWS/NCEP/EMC
  • Kleist, D.T., (2012) An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS, p. 149. , Ph.D. thesis, University of Maryland, College Park
  • Köpken, C., Kelly, G., Thépaut, J.-N., Assimilation of Meteosat radiance data within the 4D-Var system atECMWF: Assimilation experiments and forecast impact (2004) Quart. J. Roy. Meteor. Soc, 130, pp. 2277-2292
  • Lorenc, A.C., Modelling of error covariances by fourdimensional variational data assimilation (2003) Quart. J. Roy. Meteor. Soc, 129, pp. 3167-3182
  • Machado, L., The CHUVA field campaign: Overview (2013) CHUVAInt. Workshop, , http://chuvaproject.cptec.inpe.br/portal/workshop/materials.html, San Pablo, Brazil, Satellite Division and Environmental Systems/CPTEC
  • McCarty, W., Jedlovec, G., Miller, T.L., Impact of the assimilation of Atmospheric Infrared Sounder radiance measurements on short-term weather forecasts (2009) J. Geophys. Res, 114
  • Meng, Z., Zhang, F., Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments (2007) Mon. Wea. Rev, 135, pp. 1403-1423
  • Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W., The Weather Research and Forecast Model: Software architecture and performance (2004) Proc. 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, pp. 156-168. , Reading, United Kingdom, ECMWF
  • Miyoshi, T., The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter (2011) Mon. Wea. Rev, 139, pp. 1519-1535
  • Miyoshi, T., Kunii, M., The local ensemble transform Kalman filter with the Weather Research and Forecasting Model: Experiments with real observations (2011) Pure Appl. Geophys, 169, pp. 321-333
  • Miyoshi, T., Kunii, M., Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather predictio (2012) Tellus, 64A
  • Miyoshi, T., Yamane, S., Enomoto, T., Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF) (2007) SOLA, 3, pp. 89-92
  • Miyoshi, T., Sato, Y., Kadowaki, T., Ensemble Kalman filter and 4D-Var intercomparison with the Japanese Operational Global Analysis and Prediction System (2010) Mon. Wea. Rev, 138, pp. 2846-2866
  • Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave (1997) J. Geophys. Res, 102, pp. 16663-16682
  • Ota, Y., Derber, J.C., Kalnay, E., Miyoshi, T., Ensemblebased observation impact estimates using the NCEP GF (2013) Tellus, 65A
  • Pauley, P., Baker, N., Langland, R., Xu, L., Merkova, D., Gelaro, R., Velden, C., The impact of satellite atmospheric motion vectors in the U.S. Navy Global Data Assimilation System-The superob procedure (2012) Extended Abstracts, 11th Int. Winds Workshop, , http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P60_S4_10_PAULEY_V&RevisionSelectionMethod=LatestReleased&Rendition=Web, Auckland, New Zealand, EUMETSAT
  • Penny, S.G., The hybrid local ensemble transform Kalman filter (2014) Mon. Wea. Rev, 142, pp. 2139-2149
  • Ruiz, J.J., Saulo, C., Nogués-Paegle, J., WRF Model sensitivity to choice of parameterization over South America: Validation against surface variables (2010) Mon. Wea. Rev, 138, pp. 3342-3355
  • Saito, K., Seko, H., Kunii, M., Miyoshi, T., Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble predictio (2012) Tellus, 64A
  • Salio, P., Nicolini, M., Zipser, E.J., Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet (2007) Mon. Wea. Rev, 135, pp. 1290-1309
  • Salio, P., Hobouchian, M.P., Garcia Skabar, Y., Vila, D., Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network (2014) Atmos. Res, 163, pp. 146-161
  • Saucedo, M., Ruiz, J., Saulo, C., Sensitivity experiments to design a regional assimilation system combining the LETKF and the WRF Model (2014) Abstracts, The World Weather Open Science Conf, , http://wwosc2014.org/pdf/20140825-WWOSC-FinalBookofAbstracts.pdf, Montreal, QC, Canada, WMO-ICSU-Environment Canada, SCI-POS1038
  • Saulo, C., Cardazzo, S., Ruiz, J., Campetella, C., Rolla, A., El sistema de pronóstico experimental del Centro de Investigaciones del Mar y la Atmósfera (2008) Meteorologica, 33, pp. 83-97
  • Schwartz, C.S., Liu, Z., Chen, Y., Huang, X.-Y., Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot (2012) Wea. Forecasting, 27, pp. 424-437
  • Seko, H., Miyoshi, T., Shoji, Y., Saito, K., Data assimilation experiments of precipitable water vapour using the LETKF system: intense rainfall event over Japan 28 July 2008 (2011) Tellus, 63A, pp. 402-414
  • Skamarock, W., (2008) A description of the Advanced Research WRF version 3, p. 113. , NCAR Tech. Note TN-4681STR
  • Stensrud, D.J., Bao, J.-W., Warner, T.T., Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems (2000) Mon. Wea. Rev, 128, pp. 2077-2107
  • Sukoriansky, S., Galperin, B., Perov, V., Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice (2005) Bound.-Layer Meteor, 117, pp. 231-257
  • Vera, C., The South American Low-Level Jet Experiment (2006) Bull. Amer. Meteor. Soc, 87, pp. 63-77
  • Verspeek, J.A., Stoffelen, A., Portabella, M., Bonekamp, H., Anderson, C., Figa, J., Validation and calibration of ASCAT using CMOD5.n (2009) IEEE Trans. Geosci. Remote Sens, 48, pp. 386-395
  • Wang, X., Barker, D., Snyder, C., Hamill, T., A hybrid ETKF-3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment (2008) Mon. Wea. Rev, 136, pp. 5116-5131
  • Wang, Y., Tascu, S., Weidle, F., Schmeisser, K., Evaluation of the added value of regional ensemble forecasts on global ensemble forecasts (2012) Wea. Forecasting, 27, pp. 972-987
  • Warner, T.T., Peterson, R.A., Treadon, R.E., A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction (1997) Bull. Amer. Meteor. Soc, 78, pp. 2599-2617
  • Whitaker, J.S., Hamill, T.M., Evaluating methods to account for system errors in ensemble data assimilation (2012) Mon. Wea. Rev, 140, pp. 3078-3089
  • Xu, D., Liu, Z., Huang, X.-Y., Min, J., Wang, H., Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones (2013) Meteor. Atmos. Phys, 122, pp. 1-18
  • Yang, S.-C., Kalnay, E., Hunt, B., Bowler, N.E., Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter (2009) Quart. J. Roy. Meteor. Soc, 135, pp. 251-262
  • Ying, Y., Zhang, F., An adaptive covariance relaxation method for ensemble data assimilation (2015) Quart. J. Roy. Meteor. Soc, 141, pp. 2898-2906
  • Zhang, F., Snyder, C., Sun, J., Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter (2004) Mon. Wea. Rev, 132, pp. 1238-1253

Citas:

---------- APA ----------
Dillon, M.E., Skabar, Y.G., Ruiz, J., Kalnay, E., Collini, E.A., Echevarría, P., Saucedo, M.,..., Kunii, M. (2016) . Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics. Weather and Forecasting, 31(1), 217-236.
http://dx.doi.org/10.1175/WAF-D-14-00157.1
---------- CHICAGO ----------
Dillon, M.E., Skabar, Y.G., Ruiz, J., Kalnay, E., Collini, E.A., Echevarría, P., et al. "Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics" . Weather and Forecasting 31, no. 1 (2016) : 217-236.
http://dx.doi.org/10.1175/WAF-D-14-00157.1
---------- MLA ----------
Dillon, M.E., Skabar, Y.G., Ruiz, J., Kalnay, E., Collini, E.A., Echevarría, P., et al. "Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics" . Weather and Forecasting, vol. 31, no. 1, 2016, pp. 217-236.
http://dx.doi.org/10.1175/WAF-D-14-00157.1
---------- VANCOUVER ----------
Dillon, M.E., Skabar, Y.G., Ruiz, J., Kalnay, E., Collini, E.A., Echevarría, P., et al. Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics. Weather Forecast. 2016;31(1):217-236.
http://dx.doi.org/10.1175/WAF-D-14-00157.1