Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Leaves can be both a hydraulic bottleneck and a safety valve against hydraulic catastrophic dysfunctions, and thus changes in traits related to water movement in leaves and associated costs may be critical for the success of plant growth. A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) addition was done in a semideciduous Atlantic forest in northeastern Argentina. Saplings of five dominant canopy species were grown in similar gaps inside the forests (five control and five N + P addition plots). Leaf lifespan (LL), leaf mass per unit area (LMA), leaf and stem vulnerability to cavitation, leaf hydraulic conductance (Kleaf-area and Kleaf-mass) and leaf turgor loss point (TLP) were measured in the five species and in both treatments. Leaf lifespan tended to decrease with the addition of fertilizers, and LMA was significantly higher in plants with nutrient addition compared with individuals in control plots. The vulnerability to cavitation of leaves (P50leaf) either increased or decreased with the nutrient treatment depending on the species, but the average P50leaf did not change with nutrient addition. The P50leaf decreased linearly with increasing LMA and LL across species and treatments. These trade-offs have an important functional significance because more expensive (higher LMA) and less vulnerable leaves (lower P50leaf) are retained for a longer period of time. Osmotic potentials at TLP and at full turgor became more negative with decreasing P50leaf regardless of nutrient treatment. The K leaf on a mass basis was negatively correlated with LMA and LL, indicating that there is a carbon cost associated with increased water transport that is compensated by a longer LL. The vulnerability to cavitation of stems and leaves were similar, particularly in fertilized plants. Leaves in the species studied may not function as safety valves at low water potentials to protect the hydraulic pathway from water stress-induced cavitation. The lack of rainfall seasonality in the subtropical forest studied probably does not act as a selective pressure to enhance hydraulic segmentation between leaves and stems. © 2013 The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Registro:

Documento: Artículo
Título:Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species
Autor:Villagra, M.; Campanello, P.I.; Bucci, S.J.; Goldstein, G.
Filiación:Laboratorio de Ecología Funcional, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires Ciudad Universitaria, Pabellón II, 2 piso, Ciudad de Buenos Aires (C1428EHA), Argentina
Instituto de Biología Subtropical (IBS), Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Grupo de Estudios Biofísicos y Ecofisiológicos, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Argentina
Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL 33124, United States
Palabras clave:leaf hydraulic conductance; leaf lifespan; leaf mass per unit area; semideciduous Atlantic Forest; turgor loss point; canopy; cavitation; leaf morphology; nitrogen; nutrient; plant; rainfall; subtropical region; tree; vulnerability; water; Argentina; Atlantic Forest; carbon; fertilizer; nitrogen; phosphorus; water; angiosperm; Argentina; article; biomass; drug effect; evapotranspiration; growth, development and aging; leaf hydraulic conductance; leaf lifespan; leaf mass per unit area; phenotype; physiology; plant leaf; plant stem; semideciduous Atlantic Forest; tree; turgor loss point; leaf hydraulic conductance; leaf lifespan; leaf mass per unit area; semideciduous Atlantic Forest; turgor loss point; Angiosperms; Argentina; Biomass; Carbon; Fertilizers; Nitrogen; Phenotype; Phosphorus; Plant Leaves; Plant Stems; Plant Transpiration; Trees; Water
Año:2013
Volumen:33
Número:12
Página de inicio:1308
Página de fin:1318
DOI: http://dx.doi.org/10.1093/treephys/tpt098
Título revista:Tree Physiology
Título revista abreviado:Tree Physiol.
ISSN:0829318X
CODEN:TRPHE
CAS:carbon, 7440-44-0; nitrogen, 7727-37-9; phosphorus, 7723-14-0; water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0829318X_v33_n12_p1308_Villagra

Referencias:

  • Ashton, P.M.S., Some measurements of the microclimate within a Sri Lankan tropical rainforest (1992) Agricultural & Forest Meteorology, 59 (3-4), pp. 217-235
  • Blackman, C.J., Brodribb, T.J., Jordan, G.J., Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms (2010) New Phytol, 188, pp. 1113-1123
  • Brodribb, T.J., Holbrook, N.M., Stomatal closure during leaf dehydration, correlation with other leaf physiological traits (2003) Plant Physiology, 132 (4), pp. 2166-2173. , DOI 10.1104/pp.103.023879
  • Bucci, S.J., Scholz, F.G., Campanello, P.I., Hydraulic differences along the water transport system of south american nothofagus species: Do leaves protect the stem functionality? (2012) Tree Physiol, 32, pp. 880-893
  • Bucci, S.J., Scholz, F.G., Peschiutta, M.L., Arias, N.S., Meinzer, F.C., Goldstein, G., The stem xylem of patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots (2013) Plant Cell Environ, 36, pp. 2163-2174
  • Camargo, J.L.C., Kapos, V., Complex edge effects on soil moisture and microclimate in central Amazonian forest (1995) Journal of Tropical Ecology, 11 (2), pp. 205-221
  • Campanello, P.I., Genoveva Gatti, M., Ares, A., Montti, L., Goldstein, G., Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest (2007) Forest Ecology and Management, 252 (1-3), pp. 108-117. , DOI 10.1016/j.foreco.2007.06.032, PII S0378112707004744
  • Campanello, P.I., Gatti, M.G., Montti, L.F., Villagra, M., Goldstein, G., Ser o no ser tolerante a la sombra: economía de agua y carbono en especies arbóreas del Bosque Atlántico (Misiones, Argentina) (2011) Ecol Austral, 21, pp. 285-300
  • Carvalho, P.E.R., Especies arboreas brasileiras (2003) Ministerio da Agricultura, Pequaria e Abastecimento, , Brasilia, Brazil
  • Chen, J.W., Zhang, Q., Li, X.S., Cao, K.F., Gas exchange and hydraulics in seedlings of hevea brasiliensis during water stress and recovery (2010) Tree Physiol, 30, pp. 876-885
  • Condit, R., Engelbrecht, B.M., Pino, D., Pérez, R., Turner, B.L., Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees (2013) Proc Natl Acad Sci USA, 110, pp. 5064-5068
  • Davis, S.D., Ewers, F.W., Sperry, J.S., Portwood, K.A., Crocker, M.C., Adams, G.C., Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: A possible case of hydraulic failure (2002) American Journal of Botany, 89 (5), pp. 820-828
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2011) InfoStat versión, 2011. , Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
  • Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Smith, J.E., Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems (2007) Ecology Letters, 10 (12), pp. 1135-1142. , DOI 10.1111/j.1461-0248.2007.01113.x
  • Engelbrecht, B.M.J., Kursar, T.A., Tyree, M.T., Drought effects on seedling survival in a tropical moist forest (2005) Trees - Structure and Function, 19 (3), pp. 312-321. , DOI 10.1007/s00468-004-0393-0
  • Falster, D.S., Reich, P.B., Ellsworth, D.S., Wright, I.J., Westoby, M., Oleksyn, J., Lee, T.D., Lifetime return on investment increases with leaf lifespan among 10 australian woodland species (2012) New Phytol, 193, pp. 409-419
  • Fyllas, N.M., Patiño, S., Baker, T.R., Basin-wide variations in foliar properties of amazonian forest: Phylogeny, soils and climate (2009) Biogeosciences, 6, pp. 2677-2708
  • Galloway, J.N., Dentener, F.J., Capone, D.G., Nitrogen cycles: Past, present, and future (2004) Biogeochemistry, 70, pp. 153-226
  • Gatti, M.G., Campanello, P.I., Montti, L.F., Goldstein, G., Frost resistance in the tropical palm euterpe edulis and its pattern of distribution in the atlantic forest of argentina (2008) For Ecol Manage, 256, pp. 633-640
  • Goldstein, G., Andrade, J.L., Meinzer, F.C., Holbrook, N.M., Cavelier, J., Jackson, P., Celis, A., Stem water storage and diurnal patterns of water use in tropical forest canopy trees (1998) Plant, Cell and Environment, 21 (4), pp. 397-406. , DOI 10.1046/j.1365-3040.1998.00273.x
  • Goldstein, G., Bucci, S.J., Scholz, F.G., Why do trees adjust water relations and hydraulic architecture in response to nutrient availability? (2013) Tree Physiol, 33, pp. 238-240
  • Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126 (4), pp. 457-461. , DOI 10.1007/s004420100628
  • Hao, G.Y., Hoffmann, W., Scholz, F.G., Bucci, S.J., Meinzer, F.C., Franco, A., Cao, K.F., Goldstein, G., Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems (2008) Oecologia, 155, pp. 405-415
  • Summary for policymakers (2007) Climate Change 2007: The Physical Science Basis, , IPCC In: Solomon S, Qin D, Manning M et al. (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York
  • Johnson, D.M., Mcculloh, K.A., Meinzer, F.C., Woodruff, D.R., Eissenstat, D.M., Hydraulic patterns and safety margins, from stem to stomata, in three eastern us tree species (2011) Tree Physiol, 31, pp. 659-668
  • Johnson, D.M., Mcculloh, K.A., Woodruff, D.R., Meinzer, F.C., Evidence for xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance (2012) Plant Cell Environ, 35, pp. 760-769
  • Kleinbaum, D.G., Klein, M., (2005) Survival analysis. A self-learning text, , Springer, NY
  • Lamarque, J.F., Kiehl, J.T., Brasseur, G.P., Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition (2005) J Geophys Res, 110, pp. D19303
  • Leite, P.F., Klein, R.M., Vegetação (1990) Geografia do Brasil: Região Sul, 2. , In: Mesquita OV (ed) Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, pp 113-150
  • Ligier, H.D., Matteio, H.R., Polo, H.L., Rosso, J.R., Provincia de misiones (1990) Atlas de suelos de la República Argentina, , Secretaría de Agricultura, Ganadería y Pesca (eds) Tomo II. Centro de Investigaciones de Recursos Naturales, INTA, Argentina, pp 109-154
  • Meinzer, F.C., Clearwater, M.J., Goldstein, G., Water transport in trees: Current perspectives, new insights and some controversies (2001) Environmental and Experimental Botany, 45 (3), pp. 239-262. , DOI 10.1016/S0098-8472(01)00074-0, PII S0098847201000740
  • Meinzer, F.C., Woodruff, D.R., Domec, J.C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecologia, 156, pp. 31-41
  • Montti, L., Villagra, M., Campanello, P.I., Gatti, M.G., Goldstein, G., Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous atlantic forest (2013) Acta Oecol (, , in press) doi: j.actao.2013.03.004
  • Nardini, A., Pedà, G., Rocca, N.L., Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences (2012) New Phytol, 196, pp. 788-798
  • Nardini, A., Pedà, G., Salleo, S., Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves (2012) Funct Plant Biol, 39, pp. 394-401
  • Nicotra, A.B., Atkin, O.K., Bonser, S.P., Plant phenotypic plasticity in a changing climate (2010) Trends Plant Sci, 15, pp. 684-692
  • Patiño, S., Lloyd, J., Paiva, R., Branch xylem density variations across the amazon basin (2009) Biogeosciences, 6, pp. 545-568
  • Pineda-García, F., Paz, H., Meinzer, F.C., Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding (2013) Plant Cell Environ, 36, pp. 405-418
  • Sack, L., Holbrook, N.M., Leaf hydraulics (2006) Annual Review of Plant Biology, 57, pp. 361-381. , DOI 10.1146/annurev.arplant.56.032604.144141
  • Sack, L., Cowan, P.D., Jaikumar, N., Holbrook, N.M., The 'hydrology' of leaves: Co-ordination of structure and function in temperate woody species (2003) Plant, Cell and Environment, 26 (8), pp. 1343-1356. , DOI 10.1046/j.0016-8025.2003.01058.x
  • Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant, Cell and Environment, 30 (2), pp. 236-248. , DOI 10.1111/j.1365-3040.2006.01623.x
  • Scholz, F.G., Phillips, N.G., Bucci, S.J., Meinzer, F.C., Goldstein, G., Hydraulic capacitance: Biophysics and functional significance of internal water sources in relation to tree size (2011) Size- and age-related changes in tree structure and function, pp. 341-361. , In: Meinzer FC, Lachenbruch B, Dawson TE (eds) Springer, New York
  • Scholz, F.G., Bucci, S.J., Arias, N.S., Meinzer, F.C., Goldstein, G., Osmotic and elastic adjustment in cold desert shrubs differing in rooting depth: Coping with drought and subzero temperatures (2012) Oecologia, 170, pp. 885-897
  • Scoffoni, C., Rawls, M., McKown, A., Cochard, H., Sack, L., Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture (2011) Plant Physiol, 156, pp. 832-843
  • Simonin, K.A., Limm, E.B., Dawson, T.E., Hydraulic conductance of leaves correlates with leaf lifespan: Implications for lifetime carbon gain (2012) New Phytol, 193, pp. 939-947
  • Sperry, J.S., Tyree, M.T., Seasonal occurrence of xylem embolism in sugar maple (accer saccharum) (1988) Am J Bot, 75, pp. 1212-1218
  • Sperry, J.S., Donnelly, J.R., Tyree, M.T., A method for measuring hydraulic conductivity and embolism in xylem (1988) Plant Cell Environ, 11, pp. 35-40
  • Srur, M., Gatti, F., Benesovsky, V., Herrera, J., Melzew, R., Camposano, M., Los tipos de vegetación y ambientes del parque nacional iguazú y su distribución en el paisaje (2009) Parque Nacional Iguazú, Conservación y desarrollo en la Selva Paranaense de Argentina, pp. 99-118. , In: Carpinetti B (ed) Administración de Parques Nacionales, Buenos Aires, Argentina
  • Tyree, M.T., Sperry, J.S., Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? - Answers from a model (1988) Plant Physiol, 88, pp. 574-580
  • Tyree, M.T., Ewers, F.W., The hydraulic architecture of trees and other woody plants (1991) New Phytol, 119, pp. 345-360
  • Tyree, M.T., Salleo, S., Nardini, A., Lo Gullo, M.A., Mosca, R., Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? (1999) Plant Physiology, 120 (1), pp. 11-21
  • Villagra, M., Campanello, P.I., Montti, L., Goldstein, G., Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance (2013) Tree Physiol, 33, pp. 285-296
  • Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O.A., Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions (2010) Ecol Appl, 20, pp. 5-15
  • Westoby, M., Warton, D., Reich, P.B., The time value of leaf area (2000) American Naturalist, 155 (5), pp. 649-656. , DOI 10.1086/303346
  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Villar, R., The worldwide leaf economics spectrum (2004) Nature, 428 (6985), pp. 821-827. , DOI 10.1038/nature02403
  • Zhang, J.L., Cao, K.F., Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species (2009) Funct Ecol, 23, pp. 658-667
  • Zhang, Y.J., Meinzer, F.C., Qi, J.H., Goldstein, G., Cao, K.F., Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees (2013) Plant Cell Environ, 36, pp. 149-158
  • Zimmermann, M.H., (1983) Xylem structure and the ascent of sap, , Springer, Berlin, Germany

Citas:

---------- APA ----------
Villagra, M., Campanello, P.I., Bucci, S.J. & Goldstein, G. (2013) . Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiology, 33(12), 1308-1318.
http://dx.doi.org/10.1093/treephys/tpt098
---------- CHICAGO ----------
Villagra, M., Campanello, P.I., Bucci, S.J., Goldstein, G. "Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species" . Tree Physiology 33, no. 12 (2013) : 1308-1318.
http://dx.doi.org/10.1093/treephys/tpt098
---------- MLA ----------
Villagra, M., Campanello, P.I., Bucci, S.J., Goldstein, G. "Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species" . Tree Physiology, vol. 33, no. 12, 2013, pp. 1308-1318.
http://dx.doi.org/10.1093/treephys/tpt098
---------- VANCOUVER ----------
Villagra, M., Campanello, P.I., Bucci, S.J., Goldstein, G. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiol. 2013;33(12):1308-1318.
http://dx.doi.org/10.1093/treephys/tpt098