Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs and five NHs grown in a common garden. Hs had significantly lower stem hydraulic conductivity, lower stomatal conductance and higher water use efficiency than NHs. Photorespiration played an important role in avoiding photoinhibition at high irradiance in both Hs and NHs. Under saturating irradiance levels, Hs tended to dissipate a higher proportion of excessive light energy through thermal processes than NHs, while NHs dissipated a larger proportion of electron flow than Hs through the alternative electron sinks. No significant difference in maximum net CO 2 assimilation rate was found between Hs and NHs. Stem xylem hydraulic conductivity was positively correlated with maximum electron transport rate and negatively correlated with the quantum yield of non-photochemical quenching across the 10 studied Ficus species. These findings indicate that a canopy growth habit during early life stages in Hs of Ficus resulted in substantial adaptive differences from congeneric NHs not only in water relations but also in photosynthetic light use and carbon economy. The evolution of epiphytic growth habit, even for only part of their life cycle, involved profound changes in a suite of inter-correlated ecophysiological traits that persist to a large extent even during the later terrestrial growth phase. © The Author 2011.

Registro:

Documento: Artículo
Título:Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity
Autor:Hao, G.-Y.; Wang, A.-Y.; Liu, Z.-H.; Franco, A.C.; Goldstein, G.; Cao, K.-F.
Filiación:Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan Province 666303, China
Department of Biology, University of Miami, Coral Gables, FL 33124, United States
Department of Biology, Simao Teachers College, Pu'er, Yunnan Province 665000, China
College of Forestry, Guangxi University, Nanning, Guangxi Province 530005, China
Departamento de Botanica, Universidade de Brasilia, Caixa Postal 04457, Brasilia DF 70904970, Brazil
Laboratorio de Ecología Funcional (CONICET), Departamento de Ciencias Biológicas, Ciudad Universitaria Nuñez, Buenos Aires, Argentina
Palabras clave:chlorophyll fluorescence; non-photochemical quenching; photorespiration; photosynthesis; water use efficiency; chlorophyll; water; carbon dioxide; chlorophyll; developmental stage; ecophysiology; election; energy dissipation; epiphyte; gas exchange; growth form; growth rate; hydraulic conductivity; irradiance; life cycle; life history trait; photochemistry; photosynthesis; respiration; stem; stomatal conductance; water use efficiency; woody plant; xylem; article; China; electron transport; Ficus; metabolism; photosynthesis; plant leaf; plant stem; plant stoma; sunlight; transport at the cellular level; xylem; Biological Transport; China; Chlorophyll; Electron Transport; Ficus; Photosynthesis; Plant Leaves; Plant Stems; Plant Stomata; Sunlight; Water; Xylem
Año:2011
Volumen:31
Número:6
Página de inicio:626
Página de fin:636
DOI: http://dx.doi.org/10.1093/treephys/tpr035
Título revista:Tree Physiology
Título revista abreviado:Tree Physiol.
ISSN:0829318X
CODEN:TRPHE
CAS:chlorophyll, 1406-65-1, 15611-43-5; water, 7732-18-5; Chlorophyll, 1406-65-1; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0829318X_v31_n6_p626_Hao

Referencias:

  • Ackerly, D.D., Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance (2004) Ecol. Monogr., 74, pp. 25-44
  • Berg, C.C., Corner, E.J.H., (2005) Moraceae-Ficus, , Flora Malesiana Series I (Seed Plants) Volume 17/Part 2. National Herbarium of the Netherlands, Leiden
  • Borland, A.M., Griffiths, H., Maxwell, C., Broadmeadow, M.S.J., Griffiths, N.M., Barnes, J.D., On the ecophysiology of the Clusiaceae in Trinidad: expression of CAM in Clusia minor L. during the transition from wet to dry season and characterization of three endemic species (1992) New Phytologist, 122 (2), pp. 349-357
  • Brodribb, T.J., Feild, T.S., Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rainforests (2000) Plant, Cell and Environment, 23 (12), pp. 1381-1388. , DOI 10.1046/j.1365-3040.2000.00647.x
  • Brodribb, T.J., Holbrook, N.M., Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms (2004) New Phytologist, 162 (3), pp. 663-670. , DOI 10.1111/j.1469-8137.2004.01060.x
  • Brodribb, T.J., Holbrook, N.M., Gutierrez, M.V., Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees (2002) Plant, Cell and Environment, 25 (11), pp. 1435-1444. , DOI 10.1046/j.1365-3040.2002.00919.x
  • Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A., Palma, B., Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima (2005) New Phytologist, 165 (3), pp. 839-846. , DOI 10.1111/j.1469-8137.2004.01259.x
  • Brooks, B., Farquhar, G.D., Effect of temperature on the CO 2/ O 2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas exchange measurements on spinach (1985) Planta, 165, pp. 397-406
  • Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M., Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant (2004) Tree Physiology, 24 (8), pp. 891-899
  • Campanello, P.I., Gatti, M.G., Goldstein, G., Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances (2008) Tree Physiology, 28 (1), pp. 85-94
  • Coxson, D.F., Nadkarni, N.M., Ecological roles of epiphytes in nutrient cycles of forest systems (1995) Forest Canopies, pp. 495-543. , Eds. M.D. Lowman and N.M. Nadkarni. Academic Press, San Diego
  • Dobzhansky, T., Murca-Pires, B.J., Strangler trees (1954) Sci. Am., 190, pp. 78-80
  • Farquhar, G.D., Von Caemmerer, S., Modeling of photosynthetic response to environmental conditions (1982) Encyclopedia of Plant Physiology, pp. 459-587. , New Series. Eds. O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler. Springer-Verlag, Berlin
  • Farquhar, G.D., Von Caemmerer, S., Berry, J.A., A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species (1980) Planta, 149, pp. 78-90
  • Field, C., Merino, J., Mooney, H.A., Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens (1983) Oecologia, 60 (3), pp. 384-389
  • Franco, A.C., Luttge, U., Midday depression in savanna trees: Coordinated adjustments in photochemical efficiency, photorespiration, CO 2 assimilation and water use efficiency (2002) Oecologia, 131 (3), pp. 356-365. , DOI 10.1007/s00442-002-0903-y
  • Franks, P.J., Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients (2006) Plant, Cell Environ., 29, pp. 584-592
  • Gilmore, A.M., Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves (1997) Physiologia Plantarum, 99 (1), pp. 197-209. , DOI 10.1034/j.1399-3054.1997.990127.x
  • Hanke, G.T., Endo, T., Satoh, F., Hase, T., Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase (2008) Plant, Cell and Environment, 31 (7), pp. 1017-1028. , DOI 10.1111/j.1365-3040.2008.01814.x
  • Hao, G.-Y., (2010) Water Relations and Carbon Economy of Hemiepiphytic and Non-hemiepiphytic Ficus Tree Species in Southwest China, , Ph.D. thesis, University of Miami
  • Hao, G.-Y., Hoffmann, W.A., Scholz, F.G., Bucci, S.J., Meinzer, F.C., Franco, A.C., Cao, K.-F., Goldstein, G., Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems (2008) Oecologia, 155, pp. 405-415
  • Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F., Goldstein, G., Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species (2010) Funct. Ecol., 24, pp. 731-740
  • Harrison, R.D., Figs and the diversity of tropical rainforests (2005) BioScience, 55, pp. 1503-1064
  • Heber, U., Bligny, R., Streb, P., Douce, R., Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight (1996) Botanica Acta, 109 (4), pp. 307-315
  • Hendrickson, L., Furbank, R.T., Chow, W.S., A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence (2004) Photosynthesis Research, 82 (1), pp. 73-81. , DOI 10.1023/B:PRES.0000040446.87305.f4
  • Hoffmann, W.A., Franco, A.C., Moreira, M.Z., Haridasan, M., Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees (2005) Functional Ecology, 19 (6), pp. 932-940. , DOI 10.1111/j.1365-2435.2005.01045.x
  • Holbrook, N.M., Putz, F.E., From epiphyte to tree: Differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes (1996) Plant, Cell and Environment, 19 (6), pp. 631-642
  • Holbrook, N.M., Putz, F.E., Water relations of epiphytic and terrestrially-rooted strangler figs in a Venezuelan palm savanna (1996) Oecologia, 106 (4), pp. 424-431
  • Iqbal, R.M., Rao, A.U., Rasul, E., Wahid, A., Mathematical models and response functions in photosyn thesis: An exponential model (1996) Handbook of Photosynthesis, pp. 803-810. , Ed. M. Pessarakli. Dekker, New York
  • Katul, G., Leuning, R., Oren, R., Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model (2003) Plant, Cell and Environment, 26 (3), pp. 339-350. , DOI 10.1046/j.1365-3040.2003.00965.x
  • Kozaki, A., Takeba, G., Photorespiration protects C 3 plants from photooxidation (1996) Nature, 384, pp. 557-560
  • Krall, J.P., Edwards, G.E., Relationship between photosystem II activity and CO 2 fixation in leaves (1992) Physiol. Plant., 86, pp. 180-187
  • Laman, T.G., Ficus stupenda germination and seedling establishment in a Bornean rain forest canopy (1995) Ecology, 76 (8), pp. 2617-2626
  • Mehler, A.H., Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents (1951) Arch. Biochem., 33, pp. 65-77
  • Meinzer, F.C., Functional convergence in plant responses to the environment (2003) Oecologia, 134 (1), pp. 1-11. , DOI 10.1007/s00442-002-1088-0
  • Meinzer, F.C., Goldstein, G., Jackson, P., Holbrook, N.M., Gutiérrez, M.V., Cavelier, J., Environmental and physiological regulation of transpiration in tropical forest gap species: The influence of boundary layer and hydraulic conductance properties (1995) Oecologia, 101, pp. 514-522
  • Melcher, P.J., Goldstein, G., Meinzer, F.C., Yount, D.E., Jones, T.J., Holbrook, N.M., Huang, C.X., Water relations of coastal and estuarine Rhizophora mangle: Xylem pressure potential and dynamics of embolism formation and repair (2001) Oecologia, 126 (2), pp. 182-192. , DOI 10.1007/s004420000519
  • Muraoka, H., Tang, Y., Terashima, I., Koizumi, H., Washitani, I., Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light (2000) Plant, Cell and Environment, 23 (3), pp. 235-250. , DOI 10.1046/j.1365-3040.2000.00547.x
  • Ort, D.R., Baker, N.R., A photoprotective role for O 2 as an alternative electron sink in photosynthesis? (2002) Current Opinion in Plant Biology, 5 (3), pp. 193-198. , DOI 10.1016/S1369-5266(02)00259-5
  • Osmond, C.B., What is photoinhibition? Some results from comparisons of shade and sun plants (1994) Photoinhibition and Photosyn thesis: From Molecular Mechanisms to the Field, pp. 1-24. , Eds. N.R. Baker and J.R. Bowyer. BIOS Scientific Publishers, Oxford
  • Parkhurst, D.F., Tansley review No.65. Diffusion of CO2 and other gases inside leaves (1994) New Phytologist, 126 (3), pp. 449-479
  • Patino, S., Tyree, M.T., Herre, E.A., Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama (1995) New Phytol., 129, pp. 125-134
  • Peltier, G., Tolleter, D., Billon, E., Cournac, L., Auxiliary electron transport pathways in chloroplasts of microalgae (2010) Photosynth. Res., 106, pp. 19-31
  • Polle, A., Mehler reaction-friend or foe in photosynthesis? (1996) Bot. Acta, 109, pp. 84-89
  • Putz, F.E., Holbrook, N.M., Notes on the natural history of hemiepiphytes (1986) Selbyana, 9, pp. 61-69
  • Ramirez, B.W., Evolution of the strangling habit in Ficus L. subgenus Urostigma (Moraceae) (1977) Brenesia, 12-13, pp. 11-19
  • Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T., Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees (2004) Oecologia, 140 (4), pp. 543-550. , DOI 10.1007/s00442-004-1624-1
  • Sharkey, T.D., Estimating the rate of photorespiration in leaves (1988) Physiologia Plantarum, 73 (1), pp. 147-152
  • Sperry, J.S., Hydraulic constraints on plant gas exchange (2000) Agricultural and Forest Meteorology, 104 (1), pp. 13-23. , DOI 10.1016/S0168-1923(00)00144-1, PII S0168192300001441
  • Swagel, E.N., Van Bernhard, A.H., Ellmore, G.S., Substrate water potential constraints on germination of the strangler fig flcus aurea (moraceae) (1997) American Journal of Botany, 84 (5), pp. 716-722
  • Ting, I.P., Photosynthesis in hemiepiphytic species of Clusia and Ficus (1987) Oecologia, 74 (3), pp. 339-346
  • Todzia, C., Growth habits, host tree species, and density of hemiepiphytes on Barro Colorado Island, Panama (1986) Biotropica, 18, pp. 22-27
  • Valentini, R., Epron, D., Angelis, P., Matteucci, G., Dreyer, E., In situ estimation of net CO 2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply (1995) Plant, Cell Environ., 18, pp. 631-640
  • Von Caemmerer, S., (2000) Biochemical Models of Leaf Photosynthesis, pp. 47-51. , CSIRO Publishing, Collingwood, Australia
  • Williams-Linera, G., Lawton, R., The ecology of hemiepiphytes in forest canopies (1995) Forest Canopies, pp. 255-282. , Eds. M.D. Lowman and N.M. Nadkarni. Academic Press, San Diego
  • Zhang, J.-L., Cao, K.-F., Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species (2009) Funct. Ecol., 23, pp. 658-667
  • Zhang, J.-L., Meng, L.-Z., Cao, K.-F., Sustained diurnal photosynthetic depression in uppermost-canopy leaves of four dipterocarp species in the rainy and dry seasons: Does photorespiration play a role in photoprotection? (2008) Tree Physiol., 29, pp. 217-228

Citas:

---------- APA ----------
Hao, G.-Y., Wang, A.-Y., Liu, Z.-H., Franco, A.C., Goldstein, G. & Cao, K.-F. (2011) . Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity. Tree Physiology, 31(6), 626-636.
http://dx.doi.org/10.1093/treephys/tpr035
---------- CHICAGO ----------
Hao, G.-Y., Wang, A.-Y., Liu, Z.-H., Franco, A.C., Goldstein, G., Cao, K.-F. "Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity" . Tree Physiology 31, no. 6 (2011) : 626-636.
http://dx.doi.org/10.1093/treephys/tpr035
---------- MLA ----------
Hao, G.-Y., Wang, A.-Y., Liu, Z.-H., Franco, A.C., Goldstein, G., Cao, K.-F. "Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity" . Tree Physiology, vol. 31, no. 6, 2011, pp. 626-636.
http://dx.doi.org/10.1093/treephys/tpr035
---------- VANCOUVER ----------
Hao, G.-Y., Wang, A.-Y., Liu, Z.-H., Franco, A.C., Goldstein, G., Cao, K.-F. Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity. Tree Physiol. 2011;31(6):626-636.
http://dx.doi.org/10.1093/treephys/tpr035