Artículo

Goldstein, G.; Meinzer, F.C.; Bucci, S.J.; Scholz, F.G.; Franco, A.C.; Hoffmann, W.A. "Water economy of Neotropical savanna trees: Six paradigms revisited" (2008) Tree Physiology. 28(3):395-404
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biologists have long been puzzled by the striking morphological and anatomical characteristics of Neotropical savanna trees which have large scleromorphic leaves, allocate more than half of their total biomass to belowground structures and produce new leaves during the peak of the dry season. Based on results of ongoing interdisciplinary projects in the savannas of central Brazil (cerrado), we reassessed the validity of six paradigms to account for the water economy of savanna vegetation. (1) All savanna woody species are similar in their ability to take up water from deep soil layers where its availability is relatively constant throughout the year. (2) There is no substantial competition between grasses and trees for water resources during the dry season because grasses exclusively explore upper soil layers, whereas trees access water in deeper soil layers. (3) Tree species have access to abundant groundwater, their stomatal control is weak and they tend to transpire freely. (4) Savanna trees experience increased water deficits during the dry season despite their access to deep soil water. (5) Stomatal conductance of savanna species is low at night to prevent nocturnal transpiration, particularly during the dry season. (6) Savanna tree species can be classified into functional groups according to leaf phenology. We evaluated each paradigm and found differences in the patterns of water uptake between deciduous and evergreen tree species, as well as among evergreen tree species, that have implications for regulation of tree water balance. The absence of resource interactions between herbaceous and woody plants is refuted by our observation that herbaceous plants use water from deep soil layers that is released by deep-rooted trees into the upper soil layer. We obtained evidence of strong stomatal control of transpiration and show that most species exhibit homeostasis in maximum water deficit, with midday water potentials being almost identical in the wet and dry seasons. Although stomatal control is strong during the day, nocturnal transpiration is high during the dry season. Our comparative studies showed that the grouping of species into functional categories is somewhat arbitrary and that ranking species along continuous functional axes better represents the ecological complexity of adaptations of cerrado woody species to their seasonal environment. © 2008 Heron Publishing.

Registro:

Documento: Artículo
Título:Water economy of Neotropical savanna trees: Six paradigms revisited
Autor:Goldstein, G.; Meinzer, F.C.; Bucci, S.J.; Scholz, F.G.; Franco, A.C.; Hoffmann, W.A.
Filiación:Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL 33124, United States
Laboratorio de Ecología Funcional, Departamento de Ecologia, Genetica Y Evolucion, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina
USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, United States
Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Laboratorio de Ecologia Funcional, Universidad Nacional de la Patagonia San Juan Bosco, 9000 Comodoro Rivadavia, Argentina
Departamento de Botanica, Universidade de Brasília, Caixa Postal 04357, Brasília, DF 70919-970, Brazil
Department of Botany, Campus Box 7612, North Carolina State University, Raleigh, NC 28695-7612, United States
Palabras clave:Cerrado; Nighttime transpiration; Tropical savannas; Water deficit; Water uptake; adaptation; anatomy; biomass allocation; cerrado; deciduous tree; evergreen tree; morphology; savanna; stomatal conductance; transpiration; water economics; water uptake; Brazil; South America; Poaceae
Año:2008
Volumen:28
Número:3
Página de inicio:395
Página de fin:404
DOI: http://dx.doi.org/10.1093/treephys/28.3.395
Título revista:Tree Physiology
Título revista abreviado:Tree Physiol.
ISSN:0829318X
CODEN:TRPHE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0829318X_v28_n3_p395_Goldstein

Referencias:

  • Benyon, R.G., Nighttime water use in an irrigated Eucalyptus grandis plantation (1999) Tree Physiol, 19, pp. 853-859
  • Bucci, S.J. 2001. Arquitectura hidráulica y relaciones hídricas de árboles de sabanas Neotropicales: efectos de la disponibilidad de agua y nutrientes. Ph.D. Diss. Universidad de Buenos Aires, Ar- gentina, 189 p; Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Hinojosa, J.A., Hoffmann, W.A., Franco, A.C., Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species (2004) Tree Physiol, 24, pp. 1119-1127
  • Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M., Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant (2004) Tree Physiol, 24, pp. 891-899
  • Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees (2005) Trees, 19, pp. 296-304
  • Burgess, S.S.O., Adams, M.A., Turner, N.C., Ong, C.K., The redistribution of soil water by tree root systems (1998) Oecologia, 115, pp. 306-311
  • Burgess, S.S.O., Adams, M.A., Turner, N.C., Beverly, C.R., Ong, C.K., Khan, H.A., Bleby, T.M., An improved heat pulse method to measure low and reverse rates of sap flow in woody plants (2001) Tree Physiol, 21, pp. 589-598
  • Caldwell, M.M., Richards, J.H., Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by roots (1989) Oecologia, 79, pp. 1-5
  • Caldwell, M.M., Dawson, T.E., Richards, J.H., Hydraulic lift: Consequences of water efflux from the roots of plants (1998) Oecologia, 113, pp. 151-161
  • Castro, L.H.R., Kauffman, J.B., Ecosystem structure in the Brazilian cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire (1998) J. Trop. Ecol, 14, pp. 263-283
  • Cochrane, T.T., Chemical properties of native savanna and forest soils in central Brazil (1989) Soil Sci. Soc. Am. J, 53, pp. 139-141
  • Comstock, J.P., Variation in hydraulic architecture and gas exchange in two desert sub-shrubs, Hymenoclea salsola (T & G.) and Ambrosia dumosa (2000) Oecologia, 125, pp. 1-10
  • Cordell, S., Goldstein, G., Meinzer, F.C., Vitousek, P.M., Regulation of leaf lifespan and nutrient use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii (2001) Oecologia, 127, pp. 198-206
  • Cowan, I.R., Farquhar, G.D., Stomatal function in relation to leaf metabolism and environment (1977) Integration of Activity in the Higher Plant, pp. 471-505. , Ed. D.H. Jennings. Cambridge University Press, New York, pp
  • Dawson, T.E., Hydraulic lift and water use by plants: Implications for water balance, performance and plant-plant interactions (1993) Oecologia, 95, pp. 565-574
  • Domec, J.-C., Warren, J.M., Meinzer, F.C., Brooks, J.R., Coulombe, R., Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: Mitigation by hydraulic redistribution (2004) Oecologia, 141, pp. 7-16
  • Domec, J.-C., Scholz, F.G., Bucci, S.J., Meinzer, F.C., Goldstein, G., Villalobos-Vega, R., Diurnal and seasonal variation in root xylem embolism in Neotropical savanna woody species: Impact on stomatal control of plant water status (2006) Plant Cell Environ, 29, pp. 26-35
  • Donovan, L.A., Grisé, D.J., West, J.B., Pappert, R.A., Alder, N.M., Richards, J.H., Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs (1999) Oecologia, 120, pp. 209-217
  • Donovan, L.A., Linton, M.J., Richards, J.H., Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions (2001) Oecologia, 129, pp. 328-335
  • Eamus, D., Prior, L., Ecophysiology of trees of seasonally dry tropics: Comparison among phenologies (2001) Adv. Ecol. Res, 32, pp. 113-197
  • Espeleta, J.F., West, J.B., Donovan, L.A., Species-specific patterns of hydraulic lift in co-ocurring adult trees and grasses in a sandhill community (2004) Oecologia, 138, pp. 341-349
  • Feild, T.S., Holbrook, N.M., Xylem sap flow and stem hydraulics of the vesselless angiosperm Drymis granadensis (Winteraceae) in a Costa Rican elfin forest (2000) Plant Cell Environ, 23, pp. 1067-1077
  • Felfili, J.M., Silva Jr., M.C., Filgueiras, T.S., Nogueira, P.E., Comparison of cerrado (sensu stricto) vegetation in Central Brazil (1998) Cienc. Cult, 50, pp. 237-243. , Sao Pablo
  • Ferri, M. 1944. Transpiraçao de plantas permanentes dos cerrados. Bol. Fac. Fil. Ciênc. Letr. USP 41. Botãnica 4:159-224; Field, C., Mooney, H.A., Leaf age and season effects on light, water and nitrogen use efficiency in a California shrub (1983) Oecologia, 56, pp. 348-355
  • Franco, A.C., Seasonal patterns of gas exchange, water relations and growth of Roupala montana, an evergreen species (1998) Plant Ecol, 136, pp. 69-76
  • Franco, A.C., Ecophysiology of woody plants (2000) The Cerrados of Brazil: Ecology and Natural History of Neotropical Savannas, pp. 178-197. , Eds. P.S. Obviera and R.J. Marquis. Columbia University Press, New York, pp
  • Franco, A.C., Bustamante, M., Caldas, L.S., Goldstein, G., Meinzer, F.C., Kozovits, A.R., Rundel, P., Coradin, V.T.R., Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit (2005) Trees, 19, pp. 326-335
  • Furley, P.A., Ratter, J.A., Soil resources and plant communities of the central Brazilian cerrado and their development (1988) J. Biogeogr, 15, pp. 97-108
  • Goldstein, G., Sarmiento, G., Meinzer, F.C., Patrones diarios y estacionales en las relaciones hídricas de árboles siempreverdes de la sabana tropical. (1986) Acta Oecol. Oecol. Plant, 7, pp. 107-119
  • Goldstein, G., Andrade, J.L., Meinzer, F.C., Holbrook, N.M., Cavalier, J., Jackson, P., Celis, A., Stem water storage and diurnal patterns of water use in tropical forest canopy trees (1998) Plant Cell Environ, 21, pp. 397-406
  • Goodland, R., A physiognomic analysis of the cerrado vegetation of Central Brazil (1971) J. Ecol, 59, pp. 411-419
  • Goodland, R., Ferri, M.G., (1979) Ecologia do cerrado, , Universidade de São Paulo, Brazil, 193 p
  • Granier, A., Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. (1985) Ann. Sci. For, 42, pp. 193-200
  • Granier, A., Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurement (1987) Tree Physiol, 3, pp. 309-320
  • Grime, J.P., (1979) Plant strategies and vegetation processes, , Wiley, Chichester, U.K, 203 p
  • Hills, T.L., The savanna landscapes of the Amazon Basin (1969) Savannas Research Series, 14. , Dept. Geography, McGill University, Montreal, 41 p
  • Hinckley, T.M., Aslin, R.G., Aubuchon, R.R., Metcalf, C.L., Roberts, J.E., Leaf conductance and photosynthesis in four species of the oak-hickory forest type (1978) For. Sci, 24, pp. 73-84
  • Hoffmann, W.A., Orthen, B., Nascimento, P.K.V., Comparative fire ecology of tropical savanna and forest trees (2003) Funct. Ecol, 17, pp. 720-726
  • Hoffmann, W.A., Orthen, B., Franco, A.C., Constraints to seedling success of savanna and forest trees across the savanna-forest boundary (2004) Oecologia, 140, pp. 252-260
  • House, J.I., Archer, S., Breshears, D.D., Scholes, R.J., Conundrums in mixed woody-herbaceous plant systems (2003) J. Biogeogr, 30, pp. 1763-1777
  • Hutley, L.B., O'Grady, A.P., Eamus, E., Evapotranspiration of Eucalyp open-forest savanna of Northern Australia (2000) Funct. Ecol, 14, pp. 183-194
  • Jackson, P.C., Meinzer, F.C., Bustamante, M., Goldstein, G., Franco, A.C., Rundel, P.W., Caldas, L., Causin, F., Partitioning of soil water among tree species in a Brazilian cerrado ecosystem (1999) Tree Physiol, 19, pp. 717-724
  • Knoop, W.T., Walker, B.H., Interactions of woody and herbaceous vegetation in a southern African savanna (1985) J. Ecol, 73, pp. 235-254
  • Lloyd, J., Trochoulias, T., Ensbey, R., Stomatal responses and whole-tree hydraulic conductivity or orchard Macadamia integrifolia under irrigated and non-irrigated conditions (1991) Aust. J. Plant Physiol, 18, pp. 661-671
  • Ludwig, F., Dawson, T.E., Prins, H.H.T., Berendse, F., de Kroon, H., Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift (2004) Ecol. Lett, 7, pp. 623-631
  • Medina, E., Physiological ecology of Neotropical savanna plants (1982) Ecology of Tropical Savannas, pp. 308-335. , Eds. B.J. Huntley and B.H. Walker. Springer-Verlag, Berlin, pp
  • Medina, E., Francisco, M., Photosynthesis and water relations of savanna tree species differing in leaf phenology (1994) Tree Physiol, 14, pp. 1367-1381
  • Meinzer, F.C., Co-ordination of liquid and vapor phase water transport properties in plants (2002) Plant Cell Environ, 25, pp. 265-274
  • Meinzer, F.C., Functional convergence in plants responses to the environment (2003) Oecologia, 134, pp. 1-11
  • Meinzer, F.C., Grantz, D.A., Stomatal and hydraulic conductance in growing sugarcane: Stomatal adjustment to water transport capacity (1990) Plant Cell Environ, 13, pp. 383-388
  • Meinzer, F.C., Goldstein, G., Franco, A.C., Bustamante, M., Igler, E., Jackson, P., Caldas, L., Rundel, P.W., Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species (1999) Funct. Ecol, 13, pp. 273-282
  • Meinzer, F.C., Brooks, J.R., Bucci, S.J., Goldstein, G., Scholz, F.C., Warren, J.M., Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types (2004) Tree Physiol, 24, pp. 919-928
  • Miranda, A.C., Miranda, H.S., Lloyd, J., Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes (1997) Plant Cell Environ, 20, pp. 315-328
  • Moreira, M.Z., Scholz, F.G., Bucci, S.J., Sternberg, L.S., Goldstein, G., Meinzer, F.C., Franco, A.C., Hydraulic lift in a Neotropical savanna (2003) Funct. Ecol, 17, pp. 573-581
  • Niklas, K.J., Enquist, B.J., Invariant scaling relationships for interespecific plant biomass production rate and body size (2001) Proc. Natl. Acad. Sci. USA, 8, pp. 2922-2927
  • Oren, R., Phillips, N., Ewers, B.E., Pataki, D.E., Megonigal, J.P., Sap-flux scaled transpiration responses to light, air saturation deficit and leaf area allocation in a flooded Taxodium distichum forest (1999) Tree Physiol, 19, pp. 337-347
  • Pearcy, R.W., Ehleringer, J., Comparative ecophysiology of C 3 and C4 plants (1984) Plant Cell Environ, 7, pp. 1-13
  • Perez, S.C.J.G.A., Moraes, J.A.P.V., Determinacao de potencial hídrico, conductancia estomatica e potencial osmotico em espécies dos estratos arbóreo, arbustivo e herbáceo de um cerradão. (1991) Rev. Brasil. Fisiol. Veg, 391, pp. 27-37
  • Phillips, N.A., Ryan, M.G., Bond, B.J., McDowell, N.G., Hinckley, T.M., Čermák, J., Reliance on stored water increases with tree size in three species in the Pacific Northwest (2003) Tree Physiol, 23, pp. 237-245
  • Ratter, J.A., Bridgewater, S., Atkinson, R., Ribeiro, J.F., Analysis of the floristic composition of the Brazilian cerrado vegetation II: Comparison of the woody vegetation of 98 areas (1996) Edinb. J. Bot, 53, pp. 153-180
  • Reich, P.B., Walters, M.A., Ellsworth, D.S., From tropics to tundra: Global convergence in plant functioning (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 13,730-13,734
  • Richards, J.H., Caldwell, M.M., Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots (1987) Oecologia, 73, pp. 486-489
  • Richter, H., Water relations of plants in the field: Some comments on the measurement of selected parameters (1997) J. Exp. Bot, 48, pp. 1-7
  • Ritchie, G.A., Hinckley, T.M., The pressure chamber as an instrument for ecological research (1975) Adv. Ecol. Res, 9, pp. 165-254
  • Sarmiento, G. 1983. The savannas of tropical America. In Ecosystems of the World: Tropical Savannas. Ed. F. Bourlière. Elsevier, New York, pp 245-248; Sarmiento, E., (1984) The ecology of Neotropical savannas, , Harvard University Press, Cambridge, MA, 235 p
  • Sarmiento, G., Monasterio, M., Life forms and phenology (1983) Ecosystems of the World, pp. 79-108. , Ed. F. Bourlière. Elsevier, New York, pp
  • Scholes, R.J., Archer, S., Tree-grass interactions in savannas (1997) Annu. Rev. Ecol. Syst, 28, pp. 517-544
  • Scholz, F.G., (2006) Biofísica del transporte de agua en el sistema suelo-planta: Redistribución, resistencias y capacitancias hidráulicas, , Ph.D. Thesis, Universidad de Buenos Aires, Argentina, 70 p
  • Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Hydraulic redistribution of soil water by Neotropical savanna trees (2002) Tree Physiol, 22, pp. 603-612
  • Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant Cell Environ, 30, pp. 236-248
  • Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees (2007) Tree Physiol, 27, pp. 551-559
  • Schulze, E.-D., Kelliher, F.M., Korner, C., Lloyd, J., Leuning, R., Relationships among maximum stomatal conductance, carbon assimilation rate and plant nitrogen nutrition: A global ecology scaling exercise (1994) Annu. Rev. Ecol. Syst, 25, pp. 629-660
  • Sellin, A., Does pre-dawn water potential reflect conditions of equilibrium in plant and soil water status? (1999) Acta Oecol, 20, pp. 51-69
  • Smith, D.M., Jackson, N.A., Roberts, J.M., Ong, C.K., Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta (1999) Funct. Ecol, 13, pp. 256-264
  • Sperry, J.S., Hydraulic constraints on plant gas exchange (2000) Agric. For. Meteorol, 104, pp. 13-21
  • Tardieu, F., Simonneau, T., Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modeling isohydric and anisohydric behaviors (1998) J. Exp. Bot, 49, pp. 419-432
  • Texeira de Oliveira-Filho, A., G.J. Shephend, F.R. Martins and W.H. Stubblebine. 1989. Environmental factors affecting physiognomic and floristic variation in an area of cerrado of central Brazil. J. Trop. Ecol. 5:413-431; Tyree, M.T., Yang, S., Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms: The contribution of capillary water and cavitation (1990) Planta, 182, pp. 420-426
  • Valio, I.F.M., Moraes, V., Marques, M., Cavalcante, P., Sobre ï balanco de agua de Terminalia argentea Mart. Et Zuc, nas condicaoes dos cerrado na estacao seca. (1966) An. Acad. Bras. Cienc, 38, pp. s243-s259
  • Walker, B.H. and I. Noy-Meir. 1982. Aspects of the stability and resilience of savanna ecosystems. In Ecology of Tropical Savannas. Eds. B.J. Huntley and B.H. Walker. Ecol. Stud. 42:556-590; Walter, H., (1971) Ecology of tropical and subtropical vegetation, , Oliver and Boyd, Edinburgh, 539 p
  • Waring, R.H., Running, S.W., Sap wood water storage: Its contribution to transpiration and effect upon water conductance through the stem of old growth Douglas-fir (1978) Plant Cell Environ, 1, pp. 131-140
  • Warming, E., Oecology of plants (1909) An introduction to the study of plants communities, , Oxford University Press, Oxford, 422 p
  • Whitehead, D., Regulation of stomatal conductance and transpiration in forest canopies (1998) Tree Physiol, 8, pp. 633-644
  • Wright, I.J., Groom, P.K., Lamont, B.B., Poot, P., Prior, L.D., Reich, P.B., Schulze, T.-D., Westoby, M., Leaf trait relationships in Australian plants species (2004) Funct. Plant Biol, 31, pp. 551-558

Citas:

---------- APA ----------
Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C. & Hoffmann, W.A. (2008) . Water economy of Neotropical savanna trees: Six paradigms revisited. Tree Physiology, 28(3), 395-404.
http://dx.doi.org/10.1093/treephys/28.3.395
---------- CHICAGO ----------
Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A. "Water economy of Neotropical savanna trees: Six paradigms revisited" . Tree Physiology 28, no. 3 (2008) : 395-404.
http://dx.doi.org/10.1093/treephys/28.3.395
---------- MLA ----------
Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A. "Water economy of Neotropical savanna trees: Six paradigms revisited" . Tree Physiology, vol. 28, no. 3, 2008, pp. 395-404.
http://dx.doi.org/10.1093/treephys/28.3.395
---------- VANCOUVER ----------
Goldstein, G., Meinzer, F.C., Bucci, S.J., Scholz, F.G., Franco, A.C., Hoffmann, W.A. Water economy of Neotropical savanna trees: Six paradigms revisited. Tree Physiol. 2008;28(3):395-404.
http://dx.doi.org/10.1093/treephys/28.3.395