Artículo

Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the asymptotic behavior of a semi-discrete numerical approximation for a pair of heat equations ut = Δu, vt = Δv in Ω × (0, T); fully coupled by the boundary conditions ∂u/∂η = up11vp12, ∂v/∂η = up21vp22 on ∂Ω × (0, T), where Ω is a bounded smooth domain in ℝd. We focus in the existence or not of non-simultaneous blow-up for a semi-discrete approximation (U, V). We prove that if U blows up in finite time then V can fail to blow up if and only if p11 > 1 and p21 < 2(p11 - 1), which is the same condition as the one for non-simultaneous blow-up in the continuous problem. Moreover, we find that if the continuous problem has non-simultaneous blow-up then the same is true for the discrete one. We also prove some results about the convergence of the scheme and the convergence of the blow-up times.

Registro:

Documento: Artículo
Título:Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions
Autor:Acosta, G.; Bonder, J.F.; Groisman, P.; Rossi, J.D.
Filiación:Instituto de Ciencias, Univ. Nac. Gral. Sarmiento, J.M. Gutierrez entre Verdi y J.L. Suarez, (1613) Los Polvorines, Buenos Aires, Argentina
Departamento de Matemática, FCEyN, UBA, (1428), Buenos Aires, Argentina
Universidad de San Andrés, Vito Dumas 284, (1644), Victoria, Buenos Aires, Argentina
Palabras clave:Asymptotic behavior; Blow-up; Non-linear boundary conditions; Parabolic equations; Semi-discretization in space
Año:2002
Volumen:36
Número:1
Página de inicio:55
Página de fin:68
DOI: http://dx.doi.org/10.1051/m2an:2002003
Handle:http://hdl.handle.net/20.500.12110/paper_0764583X_v36_n1_p55_Acosta
Título revista:Mathematical Modelling and Numerical Analysis
Título revista abreviado:Math. Model. Numer. Anal.
ISSN:0764583X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0764583X_v36_n1_p55_Acosta.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0764583X_v36_n1_p55_Acosta

Referencias:

  • Abia, L.M., Lopez-Marcos, J.C., Martinez, J., Blow-up for semidiscretizations of reaction diffusion equations (1996) Appl. Numer. Math., 20, pp. 145-156
  • Abia, L.M., Lopez-Marcos, J.C., Martinez, J., On the blow-up time convergence of semidiscretizations of reaction diffusion equations (1998) Appl. Numer. Math., 26, pp. 399-414
  • Acosta, G., Fernández Bonder, J., Groisman, P., Rossi, J.D., Numerical approximation of a parabolic problem with nonlinear boundary condition in several space dimensions, , Preprint
  • Amann, H., Parabolic evolution equations and nonlinear boundary conditions (1988) J. Differential Equations, 72, pp. 201-269
  • Bandle, C., Brunner, H., Blow-up in diffusion equations: A survey (1998) J. Comput. Appl. Math., 97, pp. 3-22
  • Berger, M., Kohn, R.V., A rescaling algorithm for the numerical calculation of blowing up solution (1988) Comm. Pure Appl. Math., 41, pp. 841-863
  • Budd, C.J., Huang, W., Russell, R.D., Moving mesh methods for problems with blow-up (1996) SIAM J. Sci. Comput., 17, pp. 305-327
  • Chen, Y.G., Asymptotic behaviours of blowing up solutions for finite difference analogue of ut = uxx + u1+α (1986) J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33, pp. 541-574
  • Ciarlet, P.G., (1978) The Finite Element Method for Elliptic Problems, , North-Holland Publishing Company, Amsterdam, New York, Oxford
  • Durán, R.G., Etcheverry, J.I., Rossi, J.D., Numerical approximation of a parabolic problem with a nonlinear boundary condition (1998) Discrete Contin. Dyn. Syst., 4, pp. 497-506
  • Elliot, C.M., Stuart, A.M., Global dynamics of discrete semilinear parabolic equations (1993) SIAM J. Numer. Anal., 30, pp. 1622-1663
  • Fernández Bonder, J., Rossi, J.D., Blow-up vs. spurious steady solutions (2001) Proc. Amer. Math. Soc., 129, pp. 139-144
  • Humphries, A.R., Jones, D.A., Stuart, A.M., Approximation of dissipative partial differential equations over long time intervals (1993) Pitman Res. Notes Math. Ser., 303, pp. 180-207. , D.F. Griffiths et al., Eds., Numerical Analysis 1993. Proc. 15th Dundee Biennal Conf. on Numerical Analysis, June 29-July 2nd, University of Dundee, UK, Longman Scientific & Technical, Harlow
  • Pao, C.V., (1992) Nonlinear Parabolic and Elliptic Equations, , Plenum Press, New York
  • Pinasco, J.P., Rossi, J.D., Simultaneous vs. non-simultaneous blow-up (2000) N. Z. J. Math., 29, pp. 55-59
  • Rossi, J.D., On existence and nonexistence in the large for an N-dimensional system of heat equations with nontrivial coupling at the boundary (1997) N. Z. J. Math., 26, pp. 275-285
  • Samarski, A., Galaktionov, V.A., Kurdyunov, S.P., Mikailov, A.P., Blow-up in quasilinear parabolic equations (1995) De Gruyter Expositions in Mathematics, 19. , Walter de Gruyter, Ed., Berlin
  • Stuart, A.M., Humphries, A.R., Dynamical systems and numerical analysis (1998) Cambridge Monographs on Applied and Computational Mathematics, 2. , Cambridge University Press, Cambridge

Citas:

---------- APA ----------
Acosta, G., Bonder, J.F., Groisman, P. & Rossi, J.D. (2002) . Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions. Mathematical Modelling and Numerical Analysis, 36(1), 55-68.
http://dx.doi.org/10.1051/m2an:2002003
---------- CHICAGO ----------
Acosta, G., Bonder, J.F., Groisman, P., Rossi, J.D. "Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions" . Mathematical Modelling and Numerical Analysis 36, no. 1 (2002) : 55-68.
http://dx.doi.org/10.1051/m2an:2002003
---------- MLA ----------
Acosta, G., Bonder, J.F., Groisman, P., Rossi, J.D. "Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions" . Mathematical Modelling and Numerical Analysis, vol. 36, no. 1, 2002, pp. 55-68.
http://dx.doi.org/10.1051/m2an:2002003
---------- VANCOUVER ----------
Acosta, G., Bonder, J.F., Groisman, P., Rossi, J.D. Simultaneous vs. non-simultaneous blow-up in numerical approximations of a parabolic system with non-linear boundary conditions. Math. Model. Numer. Anal. 2002;36(1):55-68.
http://dx.doi.org/10.1051/m2an:2002003