Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Yeast cells can adapt their growth in response to the nutritional environment. Glucose is the favourite carbon source of Saccharomyces cerevisiae, which prefers a fermentative metabolism despite the presence of oxygen. When glucose is consumed, the cell switches to the aerobic metabolism of ethanol, during the so-called diauxic shift. The difference between fermentative and aerobic growth is in part mediated by a regulatory mechanism called glucose repression. During glucose derepression a profound gene transcriptional reprogramming occurs and genes involved in the utilization of alternative carbon sources are expressed. Protein kinase A (PKA) controls different physiological responses following the increment of cAMP as a consequence of a particular stimulus. cAMP–PKA is one of the major pathways involved in the transduction of glucose signalling. In this work the regulation of the promoters of the PKA subunits during respiratory and fermentative metabolism are studied. It is demonstrated that all these promoters are upregulated in the presence of glycerol as carbon source through the Snf1/Cat8 pathway. However, in the presence of glucose as carbon source, the regulation of each PKA promoter subunits is different and only TPK1 is repressed by the complex Hxk2/Mig1 in the presence of active Snf1. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

Registro:

Documento: Artículo
Título:Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth
Autor:Galello, F.; Pautasso, C.; Reca, S.; Cañonero, L.; Portela, P.; Moreno, S.; Rossi, S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica and CONICET – Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Bcy1; carbon source; PKA; Saccharomyces cerevisiae; Tpks; transcription regulation; cyclic AMP dependent protein kinase; glucose; glycerol; beta galactosidase; cyclic AMP dependent protein kinase; fungal RNA; hexokinase; HXK2 protein, S cerevisiae; messenger RNA; MIG1 protein, S cerevisiae; protein serine threonine kinase; repressor protein; Saccharomyces cerevisiae protein; SNF1-related protein kinases; Article; BCY1 gene; carbon source; Cat8 gene; controlled study; fungus growth; Hxk2 gene; Mig1 gene; nonhuman; priority journal; promoter region; regulatory mechanism; Saccharomyces cerevisiae; signal transduction; Snf1 gene; TPK1 gene; TPK2 gene; TPK3 gene; transcription regulation; upregulation; chemistry; chromatin immunoprecipitation; down regulation; enzymology; fermentation; genetic transcription; genetics; growth, development and aging; metabolism; phosphorylation; physiology; plasmid; real time polymerase chain reaction; Saccharomyces cerevisiae; beta-Galactosidase; Chromatin Immunoprecipitation; Cyclic AMP-Dependent Protein Kinases; Down-Regulation; Fermentation; Glucose; Glycerol; Hexokinase; Phosphorylation; Plasmids; Promoter Regions, Genetic; Protein-Serine-Threonine Kinases; Real-Time Polymerase Chain Reaction; Repressor Proteins; RNA, Fungal; RNA, Messenger; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Transcription, Genetic; Up-Regulation
Año:2017
Volumen:34
Número:12
Página de inicio:495
Página de fin:508
DOI: http://dx.doi.org/10.1002/yea.3252
Título revista:Yeast
Título revista abreviado:Yeast
ISSN:0749503X
CODEN:YESTE
CAS:cyclic AMP dependent protein kinase; glucose, 50-99-7, 84778-64-3; glycerol, 56-81-5; beta galactosidase; hexokinase, 9001-51-8; protein serine threonine kinase; beta-Galactosidase; Cyclic AMP-Dependent Protein Kinases; Glucose; Glycerol; Hexokinase; HXK2 protein, S cerevisiae; MIG1 protein, S cerevisiae; Protein-Serine-Threonine Kinases; Repressor Proteins; RNA, Fungal; RNA, Messenger; Saccharomyces cerevisiae Proteins; SNF1-related protein kinases
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0749503X_v34_n12_p495_Galello

Referencias:

  • Abdulrehman, D., Monteiro, P.T., Teixeira, M.C., YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface (2011) Nucleic Acids Res, 39, pp. D136-D140
  • Ahuatzi, D., Herrero, P., de, L.C.T., Moreno, F., The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent (2004) J Biol Chem, 279, pp. 14440-14446
  • Ahuatzi, D., Riera, A., Peláez, R., Herrero, P., Moreno, F., Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution (2007) J Biol Chem, 282, pp. 4485-4493
  • Boy-Marcotte, E., Garreau, H., Jacquet, M., Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae (1987) Yeast, 3, pp. 85-93
  • Broach, J.R., Nutritional control of growth and development in yeast (2012) Genetics, 192, pp. 73-105
  • Busnelli, S., Tripodi, F., Nicastro, R., Snf1/AMPK promotes SBF and MBF-dependent transcription in budding yeast (2013) Biochim Biophys Acta – Mol Cell Res, 1833, pp. 3254-3264
  • Cameron, S., Levin, L., Zoller, M., Wigler, M., cAMP independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae (1988) Cell, 53 (4), pp. 555-566
  • Carlson, M., Glucose repression in yeast (1999) Curr Opin Microbiol, 2, pp. 202-207
  • Chua, G., Morris, Q.D., Sopko, R., Identifying transcription factor functions and targets by phenotypic activation (2006) Proc Natl Acad Sci USA, 103, pp. 12045-12050
  • Ciriacy, M., Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression (1977) Mol Gen Genet, 154, pp. 213-220
  • Conrad, M., Schothorst, J., Kankipati, H.N., Van Zeebroeck, G., Rubio-Texeira, M., Thevelein, J.M., Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae (2014) FEMS Microbiol Rev, 38, pp. 254-299
  • DeVit, M.J., Waddle, J.A., Johnston, M., Regulated nuclear translocation of the Mig1 glucose repressor (1997) Mol Biol Cell, 8, pp. 1603-1618
  • Denis, C.L., Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II (1984) Genetics, 108, pp. 833-844
  • DeRisi, J.L., Iyer, V.R., Brown, P.O., Exploring the metabolic and genetic control of gene expression on a genomic scale (1997) Science, 278, pp. 680-686
  • Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., Proft, M., Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast (2013) Mol Cell Biol, 33, pp. 2228-2240
  • Dubacq, C., Chevalier, A., Mann, C., The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea (2004) Mol Cell Biol, 24, pp. 2560-2572
  • Fernández-García, P., Peláez, R., Herrero, P., Moreno, F., Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling (2012) J Biol Chem, 287, pp. 42151-42164
  • Gancedo, J.M., Yeast carbon catabolite repression (1998) Microbiol Mol Biol Rev, 62, pp. 334-361
  • Gancedo, J.M., The early steps of glucose signalling in yeast (2008) FEMS Microbiol Rev, 32, pp. 673-704
  • Hedbacker, K., Carlson, M., SNF1/AMPK pathways in yeast (2008) Front Biosci, 13, pp. 2408-2420
  • Hedbacker, K., Hong, S.-P., Carlson, M., Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase (2004) Mol Cell Biol, 24, pp. 8255-8263
  • Hedges, D., Proft, M., Entian, K.D., CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae (1995) Mol Cell Biol, 15, pp. 1822-1915
  • Hu, Z., Yue, Y., Jiang, H., Zhang, B., Sherwood, P.W., Michels, C.A., Analysis of the mechanism by which glucose inhibits maltose induction of MAL gene expression in Saccharomyces (2000) Genetics, 154, pp. 121-132
  • Kaniak, A., Xue, Z., Macool, D., Kim, J.-H., Johnston, M., Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae (2004) Eukaryot Cell, 3, pp. 221-231
  • Kartasheva, N.N., Kuchin, S.V., Benevolensky, S.V., Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharomyces cerevisiae (1996) Yeast, 12, pp. 1297-1300
  • Kim, J.-H., Johnston, M., Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae (2006) J Biol Chem, 281, pp. 26144-26149
  • Kuras, L., Struhl, K., Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme (1999) Nature, 399, pp. 609-613
  • Lesage, P., Yang, X., Carlson, M., Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response (1996) Mol Cell Biol, 16, pp. 1921-1928
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408
  • Lutfiyya, L.L., Iyer, V.R., DeRisi, J., DeVit, M.J., Brown, P.O., Johnston, M., Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae (1998) Genetics, 150, pp. 1377-1391
  • Lutfiyya, L.L., Johnston, M., Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression (1996) Mol Cell Biol, 16, pp. 4790-4797
  • Mayer, F.V., Heath, R., Underwood, E., ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase (2011) Cell Metab, 14, pp. 707-714
  • McCartney, R.R., Schmidt, M.C., Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit (2001) J Biol Chem, 276, pp. 36460-36466
  • Miller, J.H., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  • Momcilovic, M., Iram, S.H., Liu, Y., Carlson, M., Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase (2008) J Biol Chem, 283, pp. 19521-19529
  • Munchel, S.E., Shultzaberger, R.K., Takizawa, N., Weis, K., Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay (2011) Mol Biol Cell, 22, pp. 2787-2795
  • Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J., Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions (1986) Gene, 45, pp. 299-310
  • Nicastro, R., Tripodi, F., Guzzi, C., Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK (2015) Biochim Biophys Acta – Mol Cell Res, 1853, pp. 1615-1625
  • Nikawa, J., Cameron, S., Toda, T., Ferguson, K.M., Wigler, M., Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae (1987) Genes & Development, 1, pp. 931-937
  • Palecek, S.P., Parikh, A.S., Kron, S.J., Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth (2002) Microbiology, 148, pp. 893-907
  • Pautasso, C., Rossi, S., Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: autoregulatory role of the kinase A activity (2014) Biochim Biophys Acta – Gene Regul Mech, 1839, pp. 275-287
  • Peláez, R., Herrero, P., Moreno, F., Functional domains of yeast hexokinase 2 (2010) Biochem J, 432, pp. 181-190
  • Pessina, S., Tsiarentsyeva, V., Busnelli, S., Vanoni, M., Alberghina, L., Coccetti, P., Snf1/AMPK promotes S-phase entrance by controlling CLB5 transcription in budding yeast (2010) Cell Cycle, 9, pp. 2189-2200
  • Piškur, J., Compagno, C., (2014) Molecular Mechanisms in Yeast Carbon Metabolism, , (eds)., Springer, Berlin
  • Portela, P., Van Dijck, P., Thevelein, J.M., Moreno, S., Activation state of protein kinase A as measured in permeabilised Saccharomyces cerevisiae cells correlates with PKA-controlled phenotypes in vivo (2003) FEMS Yeast Res, 3, pp. 119-126
  • Portillo, F., Mulet, J.M., Serrano, R., A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport (2005) FEBS Lett, 579, pp. 512-516
  • Randez-Gil, F., Bojunga, N., Proft, M., Entian, K.D., Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p (1997) Mol Cell Biol, 17, pp. 2502-2510
  • Reimand, J., Vaquerizas, J.M., Todd, A.E., Vilo, J., Luscombe, N.M., Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets (2010) Nucleic Acids Res, 38, pp. 4768-4777
  • Rødkaer, S.V., Faergeman, N.J., Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae (2014) FEMS Yeast Res, 14, pp. 683-696
  • Rolland, F., Winderickx, J., Thevelein, J.M., Glucose-sensing mechanisms in eukaryotic cells (2001) Trends Biochem Sci, 26, pp. 310-317
  • Rolland, F., Winderickx, J., Thevelein, J.M., Glucose-sensing and -signalling mechanisms in yeast (2002) FEMS Yeast Res, 2, pp. 183-201
  • Rubio-Texeira, M., Van Zeebroeck, G., Voordeckers, K., Thevelein, J.M., Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling (2010) FEMS Yeast Res, 10, pp. 134-149
  • Sanz, P., Alms, G.R., Haystead, T.A., Carlson, M., Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase (2000) Mol Cell Biol, 20, pp. 1321-1328
  • Teixeira, M.C., Monteiro, P., Jain, P., The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae (2006) Nucleic Acids Res, 34, pp. D446-D451
  • Teixeira, M.C., Monteiro, P.T., Guerreiro, J.F., The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae (2014) Nucleic Acids Res, 42, pp. D161-D166
  • Toda, T., Cameron, S., Sass, P., Zoller, M., Wigler, M., Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase (1987) Cell, 50, pp. 277-287
  • Toda, T., Cameron, S., Sass, P., Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae (1987) Mol Cell Biol, 7, pp. 1371-1377
  • Treitel, M.A., Kuchin, S., Carlson, M., Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae (1998) Mol Cell Biol, 18, pp. 6273-6280
  • Tudisca, V., Simpson, C., Castelli, L., PKA isoforms coordinate mRNA fate during nutrient starvation (2012) J Cell Sci, 125, pp. 5221-5232
  • Turcotte, B., Liang, X.B., Robert, F., Soontorngun, N., Transcriptional regulation of nonfermentable carbon utilization in budding yeast (2009) FEMS Yeast Res, 10 (2010), pp. 2-13
  • Vincent, O., Townley, R., Kuchin, S., Carlson, M., Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism (2001) Genes Dev, 15, pp. 1104-1114
  • Westholm, J.O., Nordberg, N., Murén, E., Ameur, A., Komorowski, J., Ronne, H., Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3 (2008) BMC Genomics, 9, p. 601

Citas:

---------- APA ----------
Galello, F., Pautasso, C., Reca, S., Cañonero, L., Portela, P., Moreno, S. & Rossi, S. (2017) . Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth. Yeast, 34(12), 495-508.
http://dx.doi.org/10.1002/yea.3252
---------- CHICAGO ----------
Galello, F., Pautasso, C., Reca, S., Cañonero, L., Portela, P., Moreno, S., et al. "Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth" . Yeast 34, no. 12 (2017) : 495-508.
http://dx.doi.org/10.1002/yea.3252
---------- MLA ----------
Galello, F., Pautasso, C., Reca, S., Cañonero, L., Portela, P., Moreno, S., et al. "Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth" . Yeast, vol. 34, no. 12, 2017, pp. 495-508.
http://dx.doi.org/10.1002/yea.3252
---------- VANCOUVER ----------
Galello, F., Pautasso, C., Reca, S., Cañonero, L., Portela, P., Moreno, S., et al. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth. Yeast. 2017;34(12):495-508.
http://dx.doi.org/10.1002/yea.3252