In this article we analyze the effect of mass-lumping in the linear triangular finite element approximation of second-order elliptic eigenvalue problems. We prove that the eigenvalue obtained by using mass-lumping is always below the one obtained with exact integration. For singular eigenfunctions, as those arising in non convex polygons, we prove that the eigenvalue obtained with mass-lumping is above the exact eigenvalue when the mesh size is small enough. So, we conclude that the use of mass-lumping is convenient in the singular case. When the eigenfunction is smooth several numerical experiments suggest that the eigenvalue computed with mass-lumping is below the exact one if the mesh is not too coarse. © 2003 Wiley Periodicals, Inc.
| Documento: | Artículo |
| Título: | Mass-lumping or not mass-lumping for eigenvalue problems |
| Autor: | Armentano, M.G.; Durán, R.G. |
| Filiación: | Departamento de Matemática, Fac. de Ciencias Exactes y Naturales, 1428 Buenos Aires, Argentina |
| Palabras clave: | Eigenvalue problems; Finite elements; Mass-lumping |
| Año: | 2003 |
| Volumen: | 19 |
| Número: | 5 |
| Página de inicio: | 653 |
| Página de fin: | 664 |
| DOI: | http://dx.doi.org/10.1002/num.10058 |
| Título revista: | Numerical Methods for Partial Differential Equations |
| Título revista abreviado: | Numer Methods Partial Differential Equations |
| ISSN: | 0749159X |
| CODEN: | NMPDE |
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0749159X_v19_n5_p653_Armentano |