Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The first step in the generalization of the classical theory of homogeneous equations to the case of arbitrary support is to consider algebraic systems with multihomogeneous structure. We propose constructive methods for resultant matrices in the entire spectrum of resultant formulae, ranging from pure Sylvester to pure Bézout types, and including matrices of hybrid type of these two. Our approach makes heavy use of the combinatorics of multihomogeneous systems, inspired by and generalizing certain joint results by Zelevinsky, and Sturmfels or Weyman (J. Algebra, 163 (1994) 115; J. Algebraic Geom., 3 (1994) 569). One contribution is to provide conditions and algorithmic tools so as to classify and construct the smallest possible determinantal formulae for multihomogeneous resultants. Whenever such formulae exist, we specify the underlying complexes so as to make the resultant matrix explicit. We also examine the smallest Sylvester-type matrices, generically of full rank, which yield a multiple of the resultant. The last contribution is to characterize the systems that admit a purely Bézout-type matrix and show a bijection of such matrices with the permutations of the variable groups. Interestingly, it is the same class of systems admitting an optimal Sylvester-type formula. We conclude with examples showing the kinds of matrices that may be encountered, and illustrations of our Maple implementation. © 2003 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Multihomogeneous resultant formulae by means of complexes
Autor:Dickenstein, A.; Emiris, I.Z.
Filiación:Departamento de Matemática, Univ. de Buenos Aires F.C.E. y N., Pabellón I, 1428 Buenos Aires, Argentina
Dept. of Informatics/Telecomm., University of Athens, 15771 Athens, Greece
Palabras clave:Degree vector; Determinantal formula; Multihomogeneous system; Sparse resultant; Sylvester and Beźout type matrix
Año:2003
Volumen:36
Número:3-4
Página de inicio:317
Página de fin:342
DOI: http://dx.doi.org/10.1016/S0747-7171(03)00086-5
Título revista:Journal of Symbolic Computation
Título revista abreviado:J. Symb. Comput.
ISSN:07477171
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07477171_v36_n3-4_p317_Dickenstein

Referencias:

  • Awane, A., Chkiriba, A., Goze, M., (2002), http://arXiv.org/abs/math.AG/0211400, Formes d'inertie et complexe de Koszul associés à des polynômes plurihomogènes, preprint, 2002. Available from; Cardinal, J.-P., Mourrain, B., Algebraic approach of residues and applications (1996) Lectures in Applied Mathematics, 32, pp. 189-210. , Renegar, J., Shub, M., Smale, S. (Eds.), The Mathematics of Numerical Analysis (Park City, VT, 1995). AMS, Providence, RI
  • Cattani, E., Dickenstein, A., Sturmfels, B., Residues and resultants (1998) J. Math. Sci. Univ. Tokyo, 5, pp. 119-148
  • Chionh, E., Goldman, R.N., Zhang, M., Hybrid Dixon resultants (1998) Proc. 8th IMA Conf. Math. of Surfaces, pp. 193-212. , Cripps, R. (Ed.)
  • Chtcherba, A.D., Kapur, D., Conditions for exact resultants using the Dixon formulation (2000) Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 62-70. , (St. Andrews). ACM, New York
  • D'Andrea, C., Dickenstein, A., Explicit formulas for the multivariate resultant (2001) J. Pure Appl. Algebra, 164 (1-2), pp. 59-86
  • D'Andrea, C., Emiris, I.Z., Computing sparse projection operators (2001) Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering. Contemporary Mathematics, 286, pp. 121-139. , AMS, Providence, RI
  • Dickenstein, A., Emiris, I.Z., Multihomogeneous resultant matrices (2002) Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, Lille, France, pp. 46-54. , ACM Press
  • Dixon, A.L., The elimmant of three quantics in two independent variables (1908) Proc. London Math. Soc., 6, pp. 49-69
  • Eisenbud, D., Schreyer, F.-O., Resultants and Chow forms via exterior syzygies (2003) J. AMS, 16 (3), pp. 534-579. , 2003. Technical Report 2001-037. MSRI, 2001
  • Emiris, I.Z., Canny, J.F., Efficient incremental algorithms for the sparse resultant and the mixed volume (1995) J. Symbolic Comput., 20 (2), pp. 117-149
  • Emiris, I.Z., Mourrain, B., Matrices in elimination theory (1999) J. Symbolic Comput., 28, pp. 3-44. , (special issue on Elimination)
  • Emiris, I.Z., Pan, V.Y., Symbolic and numeric methods for exploiting structure in constructing resultant matrices (2002) J. Symbolic Comput., 33, pp. 393-413
  • Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., (1994) Discriminants, Resultants and Multidimensional Determinants, , Birkhäuser, Boston
  • Hartshorne, R., Algebraic Geometry (1977) Graduate Texts in Mathematics, , Springer, New York
  • Jouanolou, J.-P., Idéaux résultants (1980) Adv. Math., 37, pp. 212-238
  • Jouanolou, J.-P., Formes d'inertie et résultant: Un formulaire (1997) Adv. Math., 126, pp. 119-250. , Also: Technical Report 499/P-288, IRMA, Strasbourg, 1992
  • Khetan, A., Determinantal formula for the Chow form of a toric surface (2002) Proc. Annual ACM Intern. Symp. on Symbolic and Algebraic Computation, Lille, France, pp. 145-150. , ACM Press
  • McCoy, N.H., On the resultant of a system of forms homogeneous in each of several sets of variables (1933) Trans. Amer. Math. Soc., 35 (1), pp. 215-233
  • McKelvey, R.D., McLennan, A., The maximal number of regular totally mixed Nash equilibria (1997) J. Econom. Theory, 72, pp. 411-425
  • Mourrain, B., Pan, V.Y., Multivariate polynomials, duality and structured matrices (2000) J. Complexity, 16 (1), pp. 110-180
  • Saxena, T., Efficient variable elimination using resultants (1997), Ph.D. Thesis. Comp. Science Department, State University of New York, Albany, New York; Sturmfels, B., Zelevinsky, A., Multigraded resultants of Sylvester type (1994) J. Algebra, 163 (1), pp. 115-127
  • Wampler, C.W., Bezout number calculations for multi-homogeneous polynomial systems (1992) Appl. Math. Comput., 51, pp. 143-157
  • Weyman, J., Calculating discriminant direct images (1994) Trans. Amer. Math. Soc., 343 (1), pp. 367-389
  • Weyman, J., Zelevinsky, A., Multigraded formulae for multigraded resultants (1994) J. Algebraic Geom., 3 (4), pp. 569-597
  • Zhang, M., Topics in resultants and implicitization (2000), Ph.D. Thesis. Department of Computer Science, Rice U., Houston, Texas

Citas:

---------- APA ----------
Dickenstein, A. & Emiris, I.Z. (2003) . Multihomogeneous resultant formulae by means of complexes. Journal of Symbolic Computation, 36(3-4), 317-342.
http://dx.doi.org/10.1016/S0747-7171(03)00086-5
---------- CHICAGO ----------
Dickenstein, A., Emiris, I.Z. "Multihomogeneous resultant formulae by means of complexes" . Journal of Symbolic Computation 36, no. 3-4 (2003) : 317-342.
http://dx.doi.org/10.1016/S0747-7171(03)00086-5
---------- MLA ----------
Dickenstein, A., Emiris, I.Z. "Multihomogeneous resultant formulae by means of complexes" . Journal of Symbolic Computation, vol. 36, no. 3-4, 2003, pp. 317-342.
http://dx.doi.org/10.1016/S0747-7171(03)00086-5
---------- VANCOUVER ----------
Dickenstein, A., Emiris, I.Z. Multihomogeneous resultant formulae by means of complexes. J. Symb. Comput. 2003;36(3-4):317-342.
http://dx.doi.org/10.1016/S0747-7171(03)00086-5