Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The mechanisms of electrostatically driven adsorption of proteins on charged surfaces are studied with a new theoretical framework. The acid-base behavior, charge distribution, and electrostatic contributions to the thermodynamic properties of the proteins are modeled in the presence of a charged surface. The method is validated against experimental titration curves and apparent pKas. The theory predicts that electrostatic interactions favor the adsorption of proteins at their isoelectric points on charged surfaces despite the fact that the protein has no net charge in solution. Two known mechanisms explain adsorption under these conditions: (i) charge regulation (the charge of the protein changes due to the presence of the surface) and (ii) charge patches (the protein orients to place charged amino acids near opposite surface charges). This work shows that both mechanisms contribute to adsorption at low ionic strengths, whereas only the charge-patch mechanism operates at high ionic strength. Interestingly, the contribution of charge regulation is insensitive to protein orientation under all conditions, which validates the use of constant-charge simulations to determine the most stable orientation of adsorbed proteins. The present study also shows that the charged surface can induce large shifts in the apparent pKas of individual amino acids in adsorbed proteins. Our conclusions are valid for all proteins studied in this work (lysozyme, α-amylase, ribonuclease A, and β-lactoglobulin), as well as for proteins that are not isoelectric but have instead a net charge in solution of the same sign as the surface charge, i.e. the problem of protein adsorption on the "wrong side" of the isoelectric point. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation
Autor:Boubeta, F.M.; Soler-Illia, G.J.A.A.; Tagliazucchi, M.
Filiación:INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Nanosistemas, Universidad Nacional de General San Martín, Avenida 25 de Mayo y Francia, 1650, San Martín, Argentina
Palabras clave:Adsorption; Amino acids; Charged particles; Electrostatics; Ionic strength; Thermodynamic properties; Adsorption of proteins; Charged amino acids; Electrostatic contributions; Electrostatically driven; High ionic strength; Iso-electric points; Protein orientation; Theoretical framework; Proteins
Año:2018
Volumen:34
Número:51
Página de inicio:15727
Página de fin:15738
DOI: http://dx.doi.org/10.1021/acs.langmuir.8b03411
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v34_n51_p15727_Boubeta

Referencias:

  • Hartmann, M., Ordered Mesoporous Materials for Bioadsorption and Biocatalysis (2005) Chem. Mater., 17, pp. 4577-4593
  • Bhakta, S.A., Evans, E., Benavidez, T.E., Garcia, C.D., Protein Adsorption onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review (2015) Anal. Chim. Acta, 872, pp. 7-25
  • Bellino, M.G., Regazzoni, A.E., Soler-Illia, G.J.A.A., Amylase-Functionalized Mesoporous Silica Thin Films as Robust Biocatalyst Platforms (2010) ACS Appl. Mater. Interfaces, 2, pp. 360-365
  • Rabe, M., Verdes, D., Seeger, S., Understanding Protein Adsorption Phenomena at Solid Surfaces (2011) Adv. Colloid Interface Sci., 162, pp. 87-106
  • Gray, J.J., The Interaction of Proteins with Solid Surfaces (2004) Curr. Opin. Struct. Biol., 14, pp. 110-115
  • Wei, T., Carignano, M.A., Szleifer, I., Molecular Dynamics Simulation of Lysozyme Adsorption/Desorption on Hydrophobic Surfaces (2012) J. Phys. Chem. B, 116, pp. 10189-10194
  • Van Der Veen, M., Norde, W., Stuart, M.C., Electrostatic Interactions in Protein Adsorption Probed by Comparing Lysozyme and Succinylated Lysozyme (2004) Colloids Surf., B, 35, pp. 33-40
  • Meissner, J., Prause, A., Bharti, B., Findenegg, G.H., Characterization of Protein Adsorption onto Silica Nanoparticles: Influence of PH and Ionic Strength (2015) Colloid Polym. Sci., 293, pp. 3381-3391
  • Wittemann, A., Ballauff, M., Interaction of Proteins with Linear Polyelectrolytes and Spherical Polyelectrolyte Brushes in Aqueous Solution (2006) Phys. Chem. Chem. Phys., 8, pp. 5269-5275
  • Bremer, M.G., Duval, J., Norde, W., Lyklema, J., Electrostatic Interactions between Immunoglobulin (IgG) Molecules and a Charged Sorbent (2004) Colloids Surf., A, 250, pp. 29-42
  • Chen, K., Xu, Y., Rana, S., Miranda, O.R., Dubin, P.L., Rotello, V.M., Sun, L., Guo, X., Electrostatic Selectivity in Protein-Nanoparticle Interactions (2011) Biomacromolecules, 12, pp. 2552-2561
  • Levin, A., Czeslik, C., Interaction of Calmodulin with Poly(Acrylic Acid) Brushes: Effects of High Pressure, PH-Value and Ligand Binding (2018) Colloids Surf., B, 171, pp. 478-484
  • Demanèche, S., Chapel, J.-P., Monrozier, L.J., Quiquampoix, H., Dissimilar PH-Dependent Adsorption Features of Bovine Serum Albumin and α-Chymotrypsin on Mica Probed by AFM (2009) Colloids Surf., B, 70, pp. 226-231
  • Höök, F., Rodahl, M., Kasemo, B., Brzezinski, P., Structural Changes in Hemoglobin during Adsorption to Solid Surfaces: Effects of PH, Ionic Strength, and Ligand Binding (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 12271-12276
  • Rosenfeldt, S., Wittemann, A., Ballauff, M., Breininger, E., Bolze, J., Dingenouts, N., Interaction of Proteins with Spherical Polyelectrolyte Brushes in Solution as Studied by Small-Angle x-Ray Scattering (2004) Phys. Rev. e, 70, p. 061403
  • Henzler, K., Haupt, B., Lauterbach, K., Wittemann, A., Borisov, O., Ballauff, M., Adsorption of β-Lactoglobulin on Spherical Polyelectrolyte Brushes: Direct Proof of Counterion Release by Isothermal Titration Calorimetry (2010) J. Am. Chem. Soc., 132, pp. 3159-3163
  • Galisteo, F., Norde, W., Adsorption of Lysozyme and α-Lactalbumin on Poly(Styrenesulphonate) Latices 1. Adsorption and Desorption Behaviour (1995) Colloids Surf., B, 4, pp. 375-387
  • Biesheuvel, P.M., Van Der Veen, M., Norde, W., A Modified Poisson- Boltzmann Model Including Charge Regulation for the Adsorption of Ionizable Polyelectrolytes to Charged Interfaces, Applied to Lysozyme Adsorption on Silica (2005) J. Phys. Chem. B, 109, pp. 4172-4180
  • Longo, G.S., Szleifer, I., Adsorption and Protonation of Peptides and Proteins in PH Responsive Gels (2016) J. Phys.: Appl. Phys., 49, p. 323001
  • Lund, M., Åkesson, T., Jönsson, B., Enhanced Protein Adsorption Due to Charge Regulation (2005) Langmuir, 21, pp. 8385-8388
  • Yigit, C., Kanduč, M., Ballauff, M., Dzubiella, J., Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes (2017) Langmuir, 33, pp. 417-427
  • Peng, C., Liu, J., Zhao, D., Zhou, J., Adsorption of Hydrophobin on Different Self-Assembled Monolayers: The Role of the Hydrophobic Dipole and the Electric Dipole (2014) Langmuir, 30, pp. 11401-11411
  • Ninham, B.W., Parsegian, A., Electrostatic Potential between Surfaces Bearing Ionizable Groups in Ionic Equilibrium with Physiological Saline Solution (1971) J. Theor. Biol., 31, p. 405
  • Nap, R., Gong, P., Szleifer, I., Weak Polyelectrolytes Tethered to Surfaces: Effect of Geometry, Acid-Base Equilibrium and Electrical Permittivity (2006) J. Polym. Sci., Part B: Polym. Phys., 44, pp. 2638-2662
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., Molecular Theory of Chemically Modified Electrodes by Redox Polyelectrolytes under Equilibrium Conditions: Comparison with Experiment (2008) J. Phys. Chem. C, 112, pp. 458-471
  • Ricci, A.M., Tagliazucchi, M., Calvo, E.J., Charge Regulation in Redox Active Monolayers Embedded in Proton Exchanger Surfaces (2012) Phys. Chem. Chem. Phys., 14, p. 9988
  • Tagliazucchi, M., Azzaroni, O., Szleifer, I., Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters (2010) J. Am. Chem. Soc., 132, pp. 12404-12411
  • Stanton, C.L., Houk, K.N., Benchmarking pKa Prediction Methods for Residues in Proteins (2008) J. Chem. Theory Comput., 4, pp. 951-966
  • Bashford, D., Karplus, M., Multiple-Site Titration Curves of Proteins: An Analysis of Exact and Approximate Methods for Their Calculation (1991) J. Phys. Chem., 95, pp. 9556-9561
  • Tagliazucchi, M., Szleifer, I., Stimuli-Responsive Polymers Grafted to Nanopores and Other Nano-Curved Surfaces: Structure, Chemical Equilibrium and Transport (2012) Soft Matter, 8, p. 7292
  • Kubiak-Ossowska, K., Jachimska, B., Mulheran, P.A., How Negatively Charged Proteins Adsorb to Negatively Charged Surfaces: A Molecular Dynamics Study of BSA Adsorption on Silica (2016) J. Phys. Chem. B, 120, pp. 10463-10468
  • Hladílková, J., Callisen, T.H., Lund, M., Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of PH and Salt Concentration (2016) J. Phys. Chem. B, 120, pp. 3303-3310
  • Swails, J.M., Roitberg, A.E., Enhancing Conformation and Protonation State Sampling of Hen Egg White Lysozyme Using PH Replica Exchange Molecular Dynamics (2012) J. Chem. Theory Comput., 8, pp. 4393-4404
  • Li, L., Li, C., Sarkar, S., Zhang, J., Witham, S., Zhang, Z., Wang, L., Alexov, E., DelPhi: A Comprehensive Suite for DelPhi Software and Associated Resources (2012) BMC Biophys., 5, p. 9
  • Vorobjev, Y.N., Vila, J.A., Scheraga, H.A., FAMBE-PH: A Fast and Accurate Method to Compute the Total Solvation Free Energies of Proteins (2008) J. Phys. Chem. B, 112, pp. 11122-11136
  • Alexov, E.G., Gunner, M.R., Incorporating Protein Conformational Flexibility into the Calculation of PH-Dependent Protein Properties (1997) Biophys. J., 72, pp. 2075-2093
  • Li, H., Robertson, A.D., Jensen, J.H., Very Fast Empirical Prediction and Rationalization of Protein PKa Values (2005) Proteins, 61, pp. 704-721
  • De Vos, W.M., Leermakers, F.A.M., De Keizer, A., Stuart, M.A.C., Kleijn, J.M., Field Theoretical Analysis of Driving Forces for the Uptake of Proteins by Like-Charged Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness (2010) Langmuir, 26, pp. 249-259
  • Fogolari, F., Briggs, J.M., On the Variational Approach to Poisson-Boltzmann Free Energies (1997) Chem. Phys. Lett., 281, pp. 135-139
  • Berisio, R., Sica, F., Lamzin, V., Wilson, K., Zagari, A., Mazzarella, L., Atomic Resolution Structures of Ribonuclease A at Six PH Values (2002) Acta Crystallogr., Sect. D: Biol. Crystallogr., 58, pp. 441-450
  • Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G., Levine, M., Structure of Human Salivary A-amylase at 1.6 Å Resolution: Implications for Its Role in the Oral Cavity (1996) Acta Crystallogr., Sect. D: Biol. Crystallogr., 52, pp. 435-446
  • Kontopidis, G., Gilliver, A.N., Sawyer, L., Ovine B-lactoglobulin at Atomic Resolution (2014) Acta Crystallogr., Sect. F: Struct. Biol. Commun., 70, pp. 1498-1503
  • Basch, J.J., Timasheff, S.N., Hydrogen Ion Equilibria of the Genetic Variants of Bovine β-Lactoglobulin (1967) Arch. Biochem. Biophys., 118, pp. 37-47
  • Taulier, N., Chalikian, T.V., Characterization of PH-Induced Transitions of β-Lactoglobulin: Ultrasonic, Densimetric, and Spectroscopic Studies (2001) J. Mol. Biol., 314, pp. 873-889
  • Haynes, C.A., Sliwinsky, E., Norde, W., Structural and Electrostatic Properties of Globular Proteins at a Polystyrene-Water Interface (1994) J. Colloid Interface Sci., 164, pp. 394-409
  • Tanford, C., Hauenstein, J.D., Hydrogen Ion Equilibria of Ribonuclease1 (1956) J. Am. Chem. Soc., 78, pp. 5287-5291
  • Webb, H., Tynan-Connolly, B.M., Lee, G.M., Farrell, D., O'Meara, F., Søndergaard, C.R., Teilum, K., Nielsen, J.E., Remeasuring HEWL PKa Values by NMR Spectroscopy: Methods, Analysis, Accuracy, and Implications for Theoretical PKa Calculations (2011) Proteins: Struct., Funct., Genet., 79, pp. 685-702
  • Lee, S.J., Park, K., Protein Interaction with Surfaces: Separation Distance-dependent Interaction Energies (1994) J. Vac. Sci. Technol., A, 12, pp. 2949-2955
  • Kubiak-Ossowska, K., Cwieka, M., Kaczynska, A., Jachimska, B., Mulheran, P.A., Lysozyme Adsorption at a Silica Surface Using Simulation and Experiment: Effects of PH on Protein Layer Structure (2015) Phys. Chem. Chem. Phys., 17, pp. 24070-24077
  • Kubiak-Ossowska, K., Mulheran, P.A., Mechanism of Hen Egg White Lysozyme Adsorption on a Charged Solid Surface (2010) Langmuir, 26, pp. 15954-15965
  • Hildebrand, N., Köppen, S., Derr, L., Li, K., Koleini, M., Rezwan, K., Ciacchi, L.C., Adsorption Orientation and Binding Motifs of Lysozyme and Chymotrypsin on Amorphous Silica (2015) J. Phys. Chem. C, 119, pp. 7295-7307
  • Yu, G., Liu, J., Zhou, J., Mesoscopic Coarse-Grained Simulations of Lysozyme Adsorption (2014) J. Phys. Chem. B, 118, pp. 4451-4460
  • Ellis, C.R., Shen, J., PH-Dependent Population Shift Regulates BACE1 Activity and Inhibition (2015) J. Am. Chem. Soc., 137, pp. 9543-9546
  • Clement, G.E., Snyder, S.L., Price, H., Cartmell, R., The PH Dependence of the Pepsin-Catalyzed Hydrolysis of Neutral Dipeptides (1968) J. Am. Chem. Soc., 90, pp. 5603-5610
  • Loewen, P.C., Carpena, X., Vidossich, P., Fita, I., Rovira, C., An Ionizable Active-Site Tryptophan Imparts Catalase Activity to a Peroxidase Core (2014) J. Am. Chem. Soc., 136, pp. 7249-7252
  • Gascón, V., Márquez-Álvarez, C., Blanco, R.M., Efficient Retention of Laccase by Non-Covalent Immobilization on Amino-Functionalized Ordered Mesoporous Silica (2004) Appl. Catal., A, 482, pp. 116-126
  • Frančič, N., Bellino, M.G., Soler-Illia, G.J., Lobnik, A., Mesoporous Titania Thin Films as Efficient Enzyme Carriers for Paraoxon Determination/Detoxification: Effects of Enzyme Binding and Pore Hierarchy on the Biocatalyst Activity and Reusability (2014) Analyst, 139, pp. 3127-3136

Citas:

---------- APA ----------
Boubeta, F.M., Soler-Illia, G.J.A.A. & Tagliazucchi, M. (2018) . Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation. Langmuir, 34(51), 15727-15738.
http://dx.doi.org/10.1021/acs.langmuir.8b03411
---------- CHICAGO ----------
Boubeta, F.M., Soler-Illia, G.J.A.A., Tagliazucchi, M. "Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation" . Langmuir 34, no. 51 (2018) : 15727-15738.
http://dx.doi.org/10.1021/acs.langmuir.8b03411
---------- MLA ----------
Boubeta, F.M., Soler-Illia, G.J.A.A., Tagliazucchi, M. "Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation" . Langmuir, vol. 34, no. 51, 2018, pp. 15727-15738.
http://dx.doi.org/10.1021/acs.langmuir.8b03411
---------- VANCOUVER ----------
Boubeta, F.M., Soler-Illia, G.J.A.A., Tagliazucchi, M. Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation. Langmuir. 2018;34(51):15727-15738.
http://dx.doi.org/10.1021/acs.langmuir.8b03411