Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of the present work was to understand the interfacial properties of a complex mixture of wax esters (WEs) obtained from Jojoba oil (JO). Previously, on the basis of molecular area measurements, a hairpin structure was proposed as the hypothetical configuration of WEs, allowing their organization as compressible monolayers at the air-water interface. In the present work, we contributed with further experimental evidence by combining surface pressure (π), surface potential (ΔV), and PM-IRRAS measurements of JO monolayers and molecular dynamic simulations (MD) on a modified JO model. WEs were self-assembled in Langmuir films. Compression isotherms exhibited π lift-off at 100 Å 2 /molecule mean molecular area (A lift-off ) and a collapse point at π c ≈ 2.2 mN/m and A c ≈ 77 Å 2 /molecule. The ΔV profile reflected two dipolar reorganizations, with one of them at A > A lift-off due to the release of loosely bound water molecules and another one at A c < A < A lift-off possibly due to reorientations of a more tightly bound water population. This was consistent with the maximal SP value that was calculated according to a model that considered two populations of oriented water and was very close to the experimental value. The orientation of the ester group that was assumed in that calculation was coherent with the PM-IRRAS behavior of the carbonyl group with the C=O oriented toward the water and the C-O oriented parallel to the surface and was in accordance with their orientational angles (∼45 and ∼90°, respectively) determined by MD simulations. Taken together, the present results confirm a V shape rather than a hairpin configuration of WEs at the air-water interface. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model
Autor:Caruso, B.; Martini, M.F.; Pickholz, M.; Perillo, M.A.
Filiación:Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Fĺsicas y Naturales, Departamento de Quĺmica, Cátedra de Quĺmica Biológica, Av. Velez Sarsfield 1611, Córdoba, 5016, Argentina
CONICET, Universidad Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquĺmica, Cátedra de Quĺmica Medicinal, Junĺn 956 SS, Buenos Aires, 1113, Argentina
CONICET, Universidad de Buenos Aires, Instituto de la Quĺmica y Metabolismo Del Fármaco (IQUIMEFA), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fĺsica, Ciudad Universitaria, C1428BFA CABA, Intendente Güiraldes 2160, Pabellon 1, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Fĺsica de Buenos Aires (IFIBA), Buenos Aires, Argentina
Palabras clave:Air; Esters; Langmuir Blodgett films; Molecular dynamics; Molecules; Monolayers; Air water interfaces; Bound water molecules; Compression isotherm; Experimental evidence; Experimental values; Hairpin structures; Interfacial property; Molecular configurations; Phase interfaces; air; ester; jojoba wax; water; wax; chemistry; conformation; molecular dynamics; surface property; Air; Esters; Molecular Conformation; Molecular Dynamics Simulation; Surface Properties; Water; Waxes
Año:2018
Volumen:34
Número:26
Página de inicio:7887
Página de fin:7898
DOI: http://dx.doi.org/10.1021/acs.langmuir.8b00693
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:water, 7732-18-5; wax, 83062-05-9; Esters; jojoba wax; Water; Waxes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v34_n26_p7887_Caruso

Referencias:

  • Benson, A.A., Lee, R.F., Wax esters: Major marine metabolic energy sources (1972) Biochem. J., 128 (1), pp. 10P-10P
  • Fixter, L.M., Nagi, M.N., McCormack, J.G., Fewson, C.A., Structure, Distribution and Function of Wax Esters in Acinetobacter calcoaceticus (1986) Microbiology, 132 (11), pp. 3147-3157
  • Gibbs, A.G., Lipid melting and cuticular permeability: New insights into an old problem (2002) J. Insect Physiol., 48 (4), pp. 391-400
  • Kerstiens, G., Water transport in plant cuticles: An update (2006) J. Exp. Bot., 57 (11), pp. 2493-2499
  • Gibbs, A.G., Thermodynamics of cuticular transpiration (2011) J. Insect Physiol., 57 (8), pp. 1066-1069
  • Samuels, L., Kunst, L., Jetter, R., Sealing plant surfaces: Cuticular wax formation by epidermal cells (2008) Annu. Rev. Plant Biol., 59, pp. 683-707
  • Paananen, R., (2014) Surface Behavior of Anti-Evaporative Tear Film Wax Esters, , Master's Thesis, University of Helsinsky, Helsinsky, Finland
  • Iven, T., Herrfurth, C., Hornung, E., Heilmann, M., Hofvander, P., Stymne, S., Zhu, L.-H., Feussner, I., Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry (2013) Plant Methods, 9, p. 24
  • Perillo, M.A., Maestri, D.M., Surface behavior of jojoba oil alone or in mixtures with soybean oil (2005) Colloids Surf., A, 256 (23), pp. 199-205
  • Shah, S.N., Sharma, B.K., Moser, B.R., Erhan, S.Z., Preparation and Evaluation of Jojoba Oil Methyl Esters as Biodiesel and as a Blend Component in Ultra-Low Sulfur Diesel Fuel (2010) BioEnergy Res., 3 (2), pp. 214-223
  • Lardizabal, K.D., Metz, J.G., Sakamoto, T., Hutton, W.C., Pollard, M.R., Lassner, M.W., Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis (2000) Plant Physiol., 122 (3), pp. 645-655
  • Dyer, J.M., Stymne, S., Green, A.G., Carlsson, A.S., High-value oils from plants (2008) Plant J., 54 (4), pp. 640-655
  • Adam, N.K., The Structure of Surface Films. Part XIV. Some Esters of Fatty Acids. Evidence of Flexibility in the Long Chains (1930) Proc. R. Soc. London, Ser. A, 126 (802), pp. 366-372
  • Alexander, A.E., Schulman, J.H., Orientation in Films of Long-Chain Esters (1937) Proc. R. Soc. London, Ser. A, 161 (904), pp. 115-127
  • Paananen, R.O., Rantamäki, A.H., Holopainen, J.M., Antievaporative Mechanism of Wax Esters: Implications for the Function of Tear Fluid (2014) Langmuir, 30 (20), pp. 5897-5902
  • Schuett, B.S., Millar, T.J., Lipid Component Contributions to the Surface Activity of Meibomian LipidsLipid Contributions to the Activity of Meibomian Lipids (2012) Invest. Ophthalmol. Visual Sci., 53 (11), pp. 7208-7219
  • Caruso, B., (2011) Biophysics of the Self-Assembly of Complex Lipidic Mixtures. Interaction with A Soluble Enzyme and Modulation of Its Activity, , Doctoral Thesis, National University of Córdoba, Córdoba, Argentina
  • Teixeira, A.C., Brogueira, P., Fernandes, A.C., Goncalves Da Silva, A.M., Phase behaviour of binary mixtures involving tristearin, stearyl stearate and stearic acid: Thermodynamic study and BAM observation at the air-water interface and AFM analysis of LB films (2008) Chem. Phys. Lipids, 153 (2), pp. 98-108
  • Caruso, B., Maestri, D.M., Perillo, M.A., Phosphatidylcholine/vegetable oil pseudo-binary mixtures at the air-water interface: Predictive formulation of oil blends with selected surface behavior (2010) Colloids Surf., B, 75 (1), pp. 57-66
  • Perillo, M.A., Polo, A., Guidotti, A., Costa, E., Maggio, B., Molecular parameters of semisynthetic derivatives of gangliosides and sphingosine in monolayers at the air-water interface (1993) Chem. Phys. Lipids, 65 (3), pp. 225-238
  • Garcia, D.A., Perillo, M.A., Flunitrazepam-membrane non-specific binding and unbinding: Two pathways with different energy barriers (2002) Biophys. Chem., 95 (2), pp. 157-164
  • Gaines, G.L., Jr., (1966) Insoluble Monolayers at Liquid-Gas Interfaces, , John Wiley & Sons: New York
  • Dynarowicz-Latka, P., Dhanabalan, A., Oliveira, O.N., Jr., Modern physicochemical research on Langmuir monolayers (2001) Adv. Colloid Interface Sci., 91 (2), pp. 221-293
  • Oliveira, O.N., Bonardi, C., The Surface Potential of Langmuir Monolayers Revisited (1997) Langmuir, 13 (22), pp. 5920-5924
  • Blaudez, D., Turlet, J.-M., Dufourcq, J., Bard, D., Buffeteau, T., Desbat, B., Investigations at the air/water interface using polarization modulation IR spectroscopy (1996) J. Chem. Soc., Faraday Trans., 92 (4), pp. 525-530
  • Buffeteau, T., Desbat, B., Thin-Film Optical Constants Determined from Infrared Reflectance and Transmittance Measurements (1989) Appl. Spectrosc., 43 (6), pp. 1027-1032
  • Martini, M.F., Disalvo, E.A., Pickholz, M., Nicotinamide and picolinamide in phospholipid monolayers (2012) Int. J. Quantum Chem., 112, pp. 3289-3295
  • De Moura, A.F., Trsic, M., Molecular Dynamics Simulation of a Perylene-Derivative Langmuir Film (2005) J. Phys. Chem. B, 109 (9), pp. 4032-4041
  • Li, Z., Cranston, B., Zhao, L., Choi, P., Molecular dynamics studies of the stability of water/n-heptane interfaces with adsorbed naphthenic acids (2005) J. Phys. Chem. B, 109 (44), pp. 20929-20937
  • Nielsen, S.O., Lopez, C.F., Moore, P.B., Shelley, J.C., Klein, M.L., Molecular Dynamics Investigations of Lipid Langmuir Monolayers Using a Coarse-Grain Model (2003) J. Phys. Chem. B, 107 (50), pp. 13911-13917
  • Pickholz, M., Oliveira, O.N., Skaf, M.S., Molecular Dynamics Simulations of Neutral Chlorpromazine in Zwitterionic Phospholipid Monolayers (2006) J. Phys. Chem. B, 110 (17), pp. 8804-8814
  • Lairion, F., Disalvo, E.A., Effect of arbutin on the dipole potential and area per lipid of ester and ether phosphatidylcholine and phosphatidyl ethanolamine monolayers (2007) Biochim. Biophys. Acta, Biomembr., 1768 (3), pp. 450-456
  • Lapin, N., Seitz, O., Chabal, Y.J., (2011) Biointerface Characterization by Advanced IR Spectroscopy, pp. 83-113. , Elsevier: Amsterdam, Chapter 4
  • Rand, R.P., Fuller, N., Parsegian, V.A., Rau, D.C., Variation in hydration forces between neutral phospholipid bilayers: Evidence for hydration attraction (1988) Biochemistry, 27 (20), pp. 7711-7722
  • Berendsen, H.J.C., Van Der Spoel, D., Van Drunen, R., GROMACS: A message-passing parallel molecular dynamics implementation (1995) Comput. Phys. Commun., 91 (1), pp. 43-56
  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation (2008) J. Chem. Theory Comput., 4 (3), pp. 435-447
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J., GROMACS: Fast, flexible, and free (2005) J. Comput. Chem., 26 (16), pp. 1701-1718
  • Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F., A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6 (2004) J. Comput. Chem., 25 (13), pp. 1656-1676
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Hermans, J., Pullman, B., Interaction Models for Water in Relation to Protein Hydration (1981) Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry, pp. 331-342. , Jerusalem, Israel, April 13-16, 1981; Springer: Dordrecht, The Netherlands
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98 (12), pp. 10089-10092
  • Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A smooth particle mesh Ewald method (1995) J. Chem. Phys., 103 (19), pp. 8577-8593
  • Berendsen, H.J.C., Postma, J.P.M., Dinola, A., Haak, J.R., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81 (8), pp. 3684-3690
  • Martinez, J.M., Martinez, L., Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking (2003) J. Comput. Chem., 24 (7), pp. 819-825
  • Becke, A.D., Density-functional thermochemistry. III. the role of exact exchange (1993) J. Chem. Phys., 98 (7), pp. 5648-5652
  • Frisch, M.J., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.J.A., Pople, J.A., (1998) Gaussian 98, , Revision A.7; Gaussian Inc. Pittsburgh, PA
  • Singh, U.C., Kollman, P.A., An approach to computing electrostatic charges for molecules (1984) J. Comput. Chem., 5 (2), pp. 129-145
  • Cieplak, P., Kollman, P., On the use of electrostatic potential derived charges in molecular mechanics force fields. the relative solvation free energy of cis- and trans-N-methyl-acetamide (1991) J. Comput. Chem., 12 (10), pp. 1232-1236
  • Feller, S.E., Zhang, Y., Pastor, R.W., Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer (1995) J. Chem. Phys., 103 (23), pp. 10267-10276
  • Feller, S.E., Zhang, Y., Pastor, R.W., Brooks, B.R., Constant pressure molecular dynamics simulation: The Langevin piston method (1995) J. Chem. Phys., 103 (11), pp. 4613-4621
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graphics, 14 (1), pp. 33-38
  • Stambulchik, E., (1998) Grace, , retrieved June 20, 2009
  • Mitsche, M.A., Wang, L., Small, D.M., Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: Use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure (2010) J. Phys. Chem. B, 114 (9), pp. 3276-3284
  • Zdravkova, A.N., Van Der Eerden, J.P.J.M., Structure and dynamics of Langmuir-Blodgett tristearin films: Atomic force microscopy and theoretical analysis (2006) J. Cryst. Growth, 293 (2), pp. 528-540
  • Smaby, J.M., Brockman, H.L., Surface dipole moments of lipids at the argon-water interface. Similarities among glycerol-ester-based lipids (1990) Biophys. J., 58 (1), pp. 195-204
  • Oliveira, O.N., Taylor, D.M., Lewis, T.J., Salvagno, S., Stirling, C.J.M., Estimation of Group Dipole Moments from Surface Potential Measurements on Langmuir Monolayers (1989) J. Chem. Soc., Faraday Trans. 1, 85, pp. 1009-1018
  • Vogel, V., Möbius, D., Local surface potentials and electric dipole moments of lipid monolayers: Contributions of the water/lipid and the lipid/air interfaces (1988) J. Colloid Interface Sci., 126 (2), pp. 408-420
  • Brockman, H., Dipole potential of lipid membranes (1994) Chem. Phys. Lipids, 73 (12), pp. 57-79
  • Estrela-Lopis, I., Brezesinski, G., Möhwald, H., Dipalmitoyl-Phosphatidylcholine/Phospholipase D Interactions Investigated with Polarization-Modulated Infrared Reflection Absorption Spectroscopy (2001) Biophys. J., 80 (2), pp. 749-754
  • Huo, Q., Dziri, L., Desbat, B., Russell, K.C., Leblanc, R.M., Polarization-Modulated Infrared Reflection Absorption Spectroscopic Studies of a Hydrogen-Bonding Network at the Air-Water Interface (1999) J. Phys. Chem. B, 103 (15), pp. 2929-2934
  • Harry-O'Kuru, R.E., Mohamed, A., Abbott, T.P., Synthesis and characterization of tetrahydroxyjojoba wax and ferulates of jojoba oil (2005) Ind. Crops Prod., 22 (2), pp. 125-133
  • Blaudez, D., Castano, S., Desbat, B., Chabal, Y.J., (2011) Biointerface Characterization by Advanced IR Spectroscopy, pp. 27-55. , Elsevier: Amsterdam, Chapter 2
  • Coates, J., Interpretation of Infrared Spectra: A Practical Approach (2006) Encyclopedia of Analytical Chemistry, , John Wiley & Sons
  • Schroeter, A., Stahlberg, S., Skolova, B., Sonnenberger, S., Eichner, A., Huster, D., Vavrova, K., Vogel, A., Phase separation in ceramide[NP] containing lipid model membranes: Neutron diffraction and solid-state NMR (2017) Soft Matter, 13 (10), pp. 2107-2119

Citas:

---------- APA ----------
Caruso, B., Martini, M.F., Pickholz, M. & Perillo, M.A. (2018) . V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model. Langmuir, 34(26), 7887-7898.
http://dx.doi.org/10.1021/acs.langmuir.8b00693
---------- CHICAGO ----------
Caruso, B., Martini, M.F., Pickholz, M., Perillo, M.A. "V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model" . Langmuir 34, no. 26 (2018) : 7887-7898.
http://dx.doi.org/10.1021/acs.langmuir.8b00693
---------- MLA ----------
Caruso, B., Martini, M.F., Pickholz, M., Perillo, M.A. "V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model" . Langmuir, vol. 34, no. 26, 2018, pp. 7887-7898.
http://dx.doi.org/10.1021/acs.langmuir.8b00693
---------- VANCOUVER ----------
Caruso, B., Martini, M.F., Pickholz, M., Perillo, M.A. V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model. Langmuir. 2018;34(26):7887-7898.
http://dx.doi.org/10.1021/acs.langmuir.8b00693