Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The layer-by-layer (LbL) method is based on sequential deposition of polycations and polyanions. Many of the properties of polyelectrolyte thin films deposited via this method depend on the nature of the topmost layer. Thus, these properties show odd-even oscillations during multilayer growth as the topmost layer alternates from polycations to polyanions. The work function of a (semi)conductive substrate modified with an LbL polyelectrolyte multilayer also displays an oscillatory behavior independent of film thickness. The topmost layer modulates the work function of a substrate buried well below the film. In agreement with previous observations, in this work, we show that the work function of a gold substrate changes periodically with the number of adsorbed layers, as different combinations of polycations and polyanions are deposited using the LbL method. For the first time, we rationalize this behavior in terms of formation of a dipole layer between the excess charge at the topmost layer and the charge of the metal substrate, and we put forward a semiquantitative model based on a continuum description of the electrostatics of the system that reproduces the experimental observations. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers
Autor:Torasso, N.; Armaleo, J.M.; Tagliazucchi, M.; Williams, F.J.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Deposition; Film preparation; Gold deposits; Polyelectrolytes; Thin films; Work function; Conductive substrates; Continuum description; Layer-by-layer methods; Oscillatory behaviors; Polyelectrolyte multilayer; Semiquantitative model; Sequential deposition; Work function modulation; Multilayers
Año:2017
Volumen:33
Número:9
Página de inicio:2169
Página de fin:2176
DOI: http://dx.doi.org/10.1021/acs.langmuir.6b04650
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v33_n9_p2169_Torasso

Referencias:

  • Decher, G., Schlenoff, J.B., (2003) Multilayer Thin Films, , Wiley-VCH: Weinheim
  • Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites (1997) Science, 277, pp. 1232-1237
  • Ladam, G., Schaad, P., Voegel, J.C., Schaaf, P., Decher, G., Cuisinier, F., In Situ Determination of the Structural Properties of Initially Deposited Polyelectrolyte Multilayers (2000) Langmuir, 16, pp. 1249-1255
  • Schlenoff, J.B., Ly, H., Li, M., Charge and mass balance in polyelectrolyte multilayers (1998) J. Am. Chem. Soc., 120, pp. 7626-7634
  • Schwarz, B., Schönhoff, M., Surface Potential Driven Swelling of Polyelectrolyte Multilayers (2002) Langmuir, 18, pp. 2964-2966
  • Miller, M.D., Bruening, M.L., Correlation of the Swelling and Permeability of Polyelectrolyte Multilayer Films (2005) Chem. Mater., 17, pp. 5375-5381
  • McCormick, M., Smith, R.N., Graf, R., Barrett, C.J., Reven, L., Spiess, H.W., NMR Studies of the Effect of Adsorbed Water on Polyelectrolyte Multilayer Films in the Solid State (2003) Macromolecules, 36, pp. 3616-3625
  • Köhler, K., Shchukin, D.G., Möhwald, H., Sukhorukov, G.B., Thermal Behavior of Polyelectrolyte Multilayer Microcapsules. 1. the Effect of Odd and even Layer Number (2005) J. Phys. Chem. B, 109, pp. 18250-18259
  • Tagliazucchi, M.E., Calvo, E.J., Surface charge effects on the redox switching of LbL self-assembled redox polyelectrolyte multilayers (2007) J. Electroanal. Chem., 599, pp. 249-259
  • Tagliazucchi, M., Calvo, E.J., Charge Transport in Redox Polyelectrolyte Multilayer Films: The Dramatic Effects of Outmost Layer and Solution Ionic Strength (2010) ChemPhysChem, 11, pp. 2957-2968
  • Calvo, E.J., Flexer, V., Tagliazucchi, M., Scodeller, P., Effects of the nature and charge of the topmost layer in layer by layer self assembled amperometric enzyme electrodes (2010) Phys. Chem. Chem. Phys., 12, p. 10033
  • Xie, A.F., Granick, S., Weak versus Strong: A Weak Polyacid Embedded within a Multilayer of Strong Polyelectrolytes (2001) J. Am. Chem. Soc., 123, pp. 3175-3176
  • Koch, N., Organic Electronic Devices and Their Functional Interfaces (2007) ChemPhysChem, 8, pp. 1438-1455
  • Li, L.S., Wang, R., Fitzsimmons, M., DeQuan, Surface Electronic Properties of Self-Assembled, Oppositely Charged Macrocycle and Polymer Multilayers on Conductive Oxides (2000) J. Phys. Chem. B, 104, pp. 11195-11201
  • Li, L.S., Li, A.D.Q., Probing Surface Electronic Potentials and Photovoltaic Effects of Self-Assembled Multilayers of Metal Phthalocyanine and Oligomeric Viologen on Conductive Substrates (2001) J. Phys. Chem. B, 105, pp. 10022-10028
  • Li, L.S., Jia, Q.X., Li, A.D.Q., Effects of Organic Self-Assembled Polymer and Metal Phthalocyanine Multilayers on the Surface Photovoltaic Properties of Indium Tin Oxide and Titanium Oxide (2002) Chem. Mater., 14, pp. 1159-1165
  • Carrara, M., Kakkassery, J.J., Abid, J.-P., Fermín, D.J., Modulation of the Work Function in Layer-by-Layer Assembly of Metal Nanoparticles and Poly- l -lysine on Modified Au Surfaces (2004) ChemPhysChem, 5, pp. 571-575
  • Gorin, D.A., Yashchenok, A.M., Manturov, A.O., Kolesnikova, T.A., Möhwald, H., Effect of Layer-by-Layer Electrostatic Assemblies on the Surface Potential and Current Voltage Characteristic of Metal-Insulator-Semiconductor Structures (2009) Langmuir, 25, pp. 12529-12534
  • Ron, H., Matlis, S., Rubinstein, I., Self-Assembled Monolayers on Oxidized Metals. 2. Gold Surface Oxidative Pretreatment, Monolayer Properties, and Depression Formation (1998) Langmuir, 14, pp. 1116-1121
  • Cahen, D., Kahn, A., Electron Energetics at Surfaces and Interfaces: Concepts and Experiments (2003) Adv. Mater., 15, pp. 271-277
  • De La Llave, E., Clarenc, R., Schiffrin, D.J., Williams, F.J., Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer (2014) J. Phys. Chem. C, 118, pp. 468-475
  • Palermo, V., Palma, M., Samorì, P., Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy (2006) Adv. Mater., 18, pp. 145-164
  • Baikie, I.D., Mackenzie, S., Estrup, P.J.Z., Meyer, J.A., Noise and the Kelvin method (1991) Rev. Sci. Instrum., 62, pp. 1326-1332
  • Cho, J.H., Lee, W.H., Park, Y.D., Kim, W.-K., Kim, S.Y., Lee, J.-L., Cho, K., Enhancement of Electron Injection Using Reactive Self-Assembled Monolayer in Organic Electronic Devices (2006) Electrochem. Solid-State Lett., 9, p. G147
  • Sushko, M.L., Shluger, A.L., Rough and Fine Tuning of Metal Work Function via Chemisorbed Self-Assembled Monolayers (2009) Adv. Mater., 21, pp. 1111-1114
  • Christmann, K., (1991) Introduction to Surface Physical Chemistry, , 1 st ed. Springer: Darmstadt
  • Reiss, H., The Fermi Level and the Redox Potential (1985) J. Phys. Chem., 89, pp. 3783-3791
  • Heimel, G., Romaner, L., Zojer, E., Bredas, J.-L., The Interface Energetics of Self-Assembled Monolayers on Metals (2008) Acc. Chem. Res., 41, pp. 721-729
  • Cahen, D., Naaman, R., Vager, Z., The Cooperative Molecular Field Effect (2005) Adv. Funct. Mater., 15, pp. 1571-1578
  • Ishii, H., Sugiyama, K., Ito, E., Seki, K., Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces (1999) Adv. Mater., 11, pp. 605-625
  • Braun, S., Salaneck, W.R., Fahlman, M., Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces (2009) Adv. Mater., 21, pp. 1450-1472
  • Seo, J.H., Nguyen, T.-Q., Electronic Properties of Conjugated Polyelectrolyte Thin Films (2008) J. Am. Chem. Soc., 130, pp. 10042-10043
  • Lee, B.H., Jung, I.H., Woo, H.Y., Shim, H.-K., Kim, G., Lee, K., Multi-Charged Conjugated Polyelectrolytes as a Versatile Work Function Modifier for Organic Electronic Devices (2014) Adv. Funct. Mater., 24, pp. 1100-1108
  • Van Reenen, S., Kouijzer, S., Janssen, R.A.J., Wienk, M.M., Kemerink, M., Origin of Work Function Modification by Ionic and Amine-Based Interface Layers (2014) Adv. Mater. Interfaces, 1, p. 1400189
  • Hansen, W.N., Wang, C.L., Humphryes, T.W., Electrode emersion and the double layer (1978) J. Electroanal. Chem. Interfacial Electrochem., 90, pp. 137-141
  • Becucci, L., Guryanov, I., Maran, F., Scaletti, F., Guidelli, R., A procedure for estimating the surface dipole potential of monolayers adsorbed on electrodes (2012) Soft Matter, 8, p. 8601
  • Ngankam, A.P., Van Tassel, P.R., In Situ Layer-by-Layer Film Formation Kinetics under an Applied Voltage Measured by Optical Waveguide Lightmode Spectroscopy (2005) Langmuir, 21, pp. 5865-5871
  • Lvov, Y., Decher, G., Moehwald, H., Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine) (1993) Langmuir, 9, pp. 481-486
  • Smith, C.P., White, H.S., Theory of the interfacial potential distribution and reversible voltammetric response of electrodes coated with electroactive molecular films (1992) Anal. Chem., 64, pp. 2398-2405
  • Smith, C.P., White, H.S., Voltammetry of molecular films containing acid/base groups (1993) Langmuir, 9, pp. 1-3
  • Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods, , 2 nd ed. John Wiley and Sons: New York
  • Ricci, A.M., Tagliazucchi, M., Calvo, E.J., Charge regulation in redox active monolayers embedded in proton exchanger surfaces (2012) Phys. Chem. Chem. Phys., 14, p. 9988
  • Shiratori, S.S., Rubner, M.F., PH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes (2000) Macromolecules, 33, pp. 4213-4219
  • Choi, J., Rubner, M.F., Influence of the Degree of Ionization on Weak Polyelectrolyte Multilayer Assembly (2005) Macromolecules, 38, pp. 116-124

Citas:

---------- APA ----------
Torasso, N., Armaleo, J.M., Tagliazucchi, M. & Williams, F.J. (2017) . Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers. Langmuir, 33(9), 2169-2176.
http://dx.doi.org/10.1021/acs.langmuir.6b04650
---------- CHICAGO ----------
Torasso, N., Armaleo, J.M., Tagliazucchi, M., Williams, F.J. "Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers" . Langmuir 33, no. 9 (2017) : 2169-2176.
http://dx.doi.org/10.1021/acs.langmuir.6b04650
---------- MLA ----------
Torasso, N., Armaleo, J.M., Tagliazucchi, M., Williams, F.J. "Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers" . Langmuir, vol. 33, no. 9, 2017, pp. 2169-2176.
http://dx.doi.org/10.1021/acs.langmuir.6b04650
---------- VANCOUVER ----------
Torasso, N., Armaleo, J.M., Tagliazucchi, M., Williams, F.J. Simplified Approach to Work Function Modulation in Polyelectrolyte Multilayers. Langmuir. 2017;33(9):2169-2176.
http://dx.doi.org/10.1021/acs.langmuir.6b04650