Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A relevant question in cell biology with broad implications in biomedicine is how the organization and dynamics of interacting membranes modulate signaling cascades that involve cell-cell contact. The functionalization of surfaces with supported lipid bilayers containing tethered proteins is a particularly useful method to present ligands with membrane-like mobility to cells. Here, we present a method to generate micrometer-sized patches of lipid bilayers decorated with proteins. The method uses an economic microcontact printing technique based on one-photon lithography that can be easily implemented in a commercial laser scanning microscope. We verified that both proteins and lipids freely diffuse within the patterned bilayer, as assessed by z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. These results suggest that the supported lipid bilayer patterns constitute an optimal system to explore processes involving direct interactions between cells. We also illustrate possible applications of this method by exploring the interaction of cells expressing the Fas receptor and patterns of lipid bilayers containing an agonist antibody against Fas. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns
Autor:Sánchez, M.F.; Dodes Traian, M.M.; Levi, V.; Carrer, D.C.
Filiación:Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET, Universidad Nacional de Córdoba, Friuli 2434, CC389, Córdoba, 5000, Argentina
Departamento de Química Biológica, IQUIBICEN, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina
Palabras clave:Cell signaling; Cells; Cytology; Electron device manufacture; Fluorescence; Fluorescence spectroscopy; Photobleaching; Photons; Proteins; Spectroscopic analysis; Direct interactions; Fluorescence Correlation Spectroscopy; Fluorescence recovery after photobleaching; Functionalizations; Laser scanning microscope; Microcontact printing techniques; Signaling cascades; Supported lipid bilayers; Lipid bilayers; ligand; lipid bilayer; chemistry; lipid bilayer; photon; spectrofluorometry; Ligands; Lipid Bilayers; Photons; Spectrometry, Fluorescence
Año:2015
Volumen:31
Número:43
Página de inicio:11943
Página de fin:11950
DOI: http://dx.doi.org/10.1021/acs.langmuir.5b02934
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:Ligands; Lipid Bilayers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v31_n43_p11943_Sanchez

Referencias:

  • Bromley, S.K., Burack, W.R., Johnson, K.G., Somersalo, K., Sims, T.N., Sumen, C., Davis, M.M., Dustin, M.L., The Immunological Synapse (2001) Annu. Rev. Immunol., 19 (1), pp. 375-396
  • Manz, B.N., Groves, J.T., Spatial organization and signal transduction at intercellular junctions (2010) Nat. Rev. Mol. Cell Biol., 11 (5), pp. 342-352
  • Hsu, C.-J., Hsieh, W.-T., Waldman, A., Clarke, F., Huseby, E.S., Burkhardt, J.K., Baumgart, T., Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation (2012) PLoS One, 7 (2)
  • Bunnell, S.C., Hong, D.I., Kardon, J.R., Yamazaki, T., McGlade, C.J., Barr, V.A., Samelson, L.E., T cell receptor ligation induces the formation of dynamically regulated signaling assemblies (2002) J. Cell Biol., 158 (7), pp. 1263-1275
  • Campi, G., Varma, R., Dustin, M.L., Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling (2005) J. Exp. Med., 202 (8), pp. 1031-1036
  • Vogel, V., Sheetz, M., Local force and geometry sensing regulate cell functions (2006) Nat. Rev. Mol. Cell Biol., 7 (4), pp. 265-275
  • Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.-J., Pierce, S.K., Location is everything: Lipid Rafts and Immune Cell Signaling∗ (2003) Annu. Rev. Immunol., 21 (1), pp. 457-481
  • Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E., Geometric Control of Cell Life and Death (1997) Science, 276 (5317), pp. 1425-1428
  • Fleire, S.J., Goldman, J.P., Carrasco, Y.R., Weber, M., Bray, D., Batista, F.D., B Cell Ligand Discrimination Through a Spreading and Contraction Response (2006) Science, 312 (5774), pp. 738-741
  • Chan, P.Y., Lawrence, M.B., Dustin, M.L., Ferguson, L.M., Golan, D.E., Springer, T.A., Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2 (1991) J. Cell Biol., 115 (1), pp. 245-255
  • Batista, F.D., Iber, D., Neuberger, M.S., B cells acquire antigen from target cells after synapse formation (2001) Nature, 411 (6836), pp. 489-494
  • Ketchum, C., Miller, H., Song, W., Upadhyaya, A., Ligand mobility regulates B cell receptor clustering and signaling activation (2014) Biophys. J., 106 (1), pp. 26-36
  • Groves, J.T., Dustin, M.L., Supported planar bilayers in studies on immune cell adhesion and communication (2003) J. Immunol. Methods, 278 (1-2), pp. 19-32
  • Weghuber, J., Sunzenauer, S., Plochberger, B., Brameshuber, M., Haselgrübler, T., Schütz, G.J., Temporal resolution of protein-protein interactions in the live-cell plasma membrane (2010) Anal. Bioanal. Chem., 397 (8), pp. 3339-3347
  • Chiantia, S., Ries, J., Chwastek, G., Carrer, D., Li, Z., Bittman, R., Schwille, P., Role of ceramide in membrane protein organization investigated by combined AFM and FCS (2008) Biochim. Biophys. Acta, Biomembr., 1778 (5), pp. 1356-1364
  • Ries, J., Chiantia, S., Schwille, P., Accurate Determination of Membrane Dynamics with Line-Scan FCS (2009) Biophys. J., 96 (5), pp. 1999-2008
  • Forstner, M.B., Yee, C.K., Parikh, A.N., Groves, J.T., Lipid Lateral Mobility and Membrane Phase Structure Modulation by Protein Binding (2006) J. Am. Chem. Soc., 128 (47), pp. 15221-15227
  • Dustin, M.L., Long, E.O., Cytotoxic immunological synapses (2010) Immunological Reviews, 235 (1), pp. 24-34
  • Lee, K.-H., Feig, C., Tchikov, V., Schickel, R., Hallas, C., Schütze, S., Peter, M.E., Chan, A.C., The role of receptor internalization in CD95 signaling (2006) EMBO J., 25 (5), pp. 1009-1023
  • Quist, A.P., Pavlovic, E., Oscarsson, S., Recent advances in microcontact printing (2005) Anal. Bioanal. Chem., 381 (3), pp. 591-600
  • Torres, A.J., Wu, M., Holowka, D., Baird, B., Nanobiotechnology and Cell Biology: Micro- and Nanofabricated Surfaces to Investigate Receptor-Mediated Signaling (2008) Annu. Rev. Biophys., 37 (1), pp. 265-288
  • Groves, J.T., Boxer, S.G., Micropattern Formation in Supported Lipid Membranes (2002) Acc. Chem. Res., 35 (3), pp. 149-157
  • Dontha, N., Nowall, W.B., Kuhr, W.G., Generation of biotin/avidin/enzyme nanostructures with maskless photolithography (1997) Anal. Chem., 69 (14), pp. 2619-2625
  • James, C.D., Davis, R.C., Kam, L., Craighead, H.G., Isaacson, M., Turner, J.N., Shain, W., Patterned protein layers on solid substrates by thin stamp microcontact printing (1998) Langmuir, 14 (4), pp. 741-744
  • Kung, L.A., Kam, L., Hovis, J.S., Boxer, S.G., Patterning Hybrid Surfaces of Proteins and Supported Lipid Bilayers (2000) Langmuir, 16 (17), pp. 6773-6776
  • Torres, A.J., Vasudevan, L., Holowka, D., Baird, B.A., Focal adhesion proteins connect IgE receptors to the cytoskeleton as revealed by micropatterned ligand arrays (2008) Proc. Natl. Acad. Sci. U. S. A., 105 (45), pp. 17238-17244
  • Offenhäusser, A., Böcker-Meffert, S., Decker, T., Helpenstein, R., Gasteier, P., Groll, J., Möller, M., Vogt-Eisele, A., Microcontact printing of proteins for neuronal cell guidance (2007) Soft Matter, 3 (3), pp. 290-298
  • Roth, S., Bugnicourt, G., Bisbal, M., Gory-Fauré, S., Brocard, J., Villard, C., Neuronal architectures with axo-dendritic polarity above silicon nanowires (2012) Small, 8 (5), pp. 671-675
  • Morigaki, K., Mizutani, K., Saito, M., Okazaki, T., Nakajima, Y., Tatsu, Y., Imaishi, H., Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures (2013) Langmuir, 29 (8), pp. 2722-2730
  • Yamada, M., Imaishi, H., Morigaki, K., Microarrays of phospholipid bilayers generated by inkjet printing (2013) Langmuir, 29 (21), pp. 6404-6408
  • Wu, M., Holowka, D., Craighead, H.G., Baird, B., Visualization of plasma membrane compartmentalization with patterned lipid bilayers (2004) Proc. Natl. Acad. Sci. U. S. A., 101 (38), pp. 13798-13803
  • Wu, M., Baumgart, T., Hammond, S., Holowka, D., Baird, B., Differential targeting of secretory lysosomes and recycling endosomes in mast cells revealed by patterned antigen arrays (2007) J. Cell Sci., 120 (17), pp. 3147-3154
  • Orth, R.N., Wu, M., Holowka, D.A., Craighead, H.G., Baird, B.A., Mast cell activation on patterned lipid bilayers of subcellular dimensions (2003) Langmuir, 19 (5), pp. 1599-1605
  • Kam, L., Boxer, S.G., Cell adhesion to protein-micropatterned-supported lipid bilayer membranes (2001) J. Biomed. Mater. Res., 55 (4), pp. 487-495
  • Kunik, D., Aramendia, P.F., Martínez, O.E., Single photon fluorescent microlithography for live-cell imaging (2009) Microsc. Res. Tech.
  • Truskett, V.N., Watts, M.P.C., Trends in imprint lithography for biological applications (2006) Trends Biotechnol., 24 (7), pp. 312-317
  • Tabeling, P., (2005) Introduction to Microfluidics, p. vii. , Oxford University Press: Oxford, U.K. 301 pp
  • Costantino, S., Heinze, K.G., Martinez, O.E., De Koninck, P., Wiseman, P.W., Two-photon fluorescent microlithography for live-cell imaging (2005) Microsc. Res. Tech., 68 (5), pp. 272-276
  • Nagata, S., Apoptosis by death factor (1997) Cell, 88 (3), pp. 355-365
  • Peter, M.E., Krammer, P.H., The CD95(APO-1/Fas) DISC and beyond (2003) Cell Death Differ., 10 (1), pp. 26-35
  • Day, C.A., Kraft, L.J., Kang, M., Kenworthy, A.K., Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP) (2012) Curr. Protoc. Cytom.
  • Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics (1976) Biophys. J., 16 (9), pp. 1055-1069
  • Soumpasis, D.M., Theoretical analysis of fluorescence photobleaching recovery experiments (1983) Biophys. J., 41 (1), pp. 95-97
  • García-Sáez, A.J., Carrer, D.C., Schwille, P., Fluorescence Correlation Spectroscopy for the Study of Membrane Dynamics and Organization in Giant Unilamellar Vesicles (2010) Liposomes, 606, pp. 493-508. , Weissig, V. Humana Press: Totowa, NJ
  • Macháň, R., Hof, M., Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy (2010) Biochim. Biophys. Acta, Biomembr., 1798 (7), pp. 1377-1391
  • Benda, A., Beneš, M., Marecek, V., Lhotsky, A., Hermens, W.T., Hof, M., How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy (2003) Langmuir, 19 (10), pp. 4120-4126
  • Yu, C.-H., Groves, J.T., Engineering supported membranes for cell biology (2010) Med. Biol. Eng. Comput., 48 (10), pp. 955-963
  • O'Reilly, L.A., Tai, L., Lee, L., Kruse, E.A., Grabow, S., Fairlie, W.D., Haynes, N.M., Strasser, A., Membrane-bound Fas ligand only is essential for Fas-induced apoptosis (2009) Nature, 461 (7264), pp. 659-663
  • Weiss, J.M., Subleski, J.J., Back, T., Chen, X., Watkins, S.K., Yagita, H., Sayers, T.J., Wiltrout, R.H., Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/alphaCD40 therapy (2014) J. Immunol., 192 (12), pp. 5821-5829
  • Steinberger, T., Machan, R., Hof, M., Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes (2014) Methods Mol. Biol., 1076, pp. 617-634
  • Sterling, S.M., Allgeyer, E.S., Fick, J., Prudovsky, I., Mason, M.D., Neivandt, D.J., Phospholipid diffusion coefficients of cushioned model membranes determined via z-scan fluorescence correlation spectroscopy (2013) Langmuir, 29 (25), pp. 7966-7974
  • Hovis, J.S., Boxer, S.G., Patterning and Composition Arrays of Supported Lipid Bilayers by Microcontact Printing (2001) Langmuir, 17 (11), pp. 3400-3405
  • Kahya, N., Schwille, P., How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy (2006) J. Fluoresc., 16 (5), pp. 671-678
  • Przybylo, M., Sykora, J., Humpolickova, J., Benda, A., Zan, A., Hof, M., Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions (2006) Langmuir, 22 (22), pp. 9096-9099
  • Batista, F.D., Dustin, M.L., Cell:cell interactions in the immune system (2013) Immunol Rev., 251 (1), pp. 7-12
  • Peter, H.H., Warnatz, K., Molecules involved in T-B co-stimulation and B cell homeostasis: possible targets for an immunological intervention in autoimmunity (2005) Expert Opin. Biol. Ther., 5, pp. S61-S71
  • Krzewski, K., Bryceson, Y.T., Molecular mechanisms regulating cytotoxic lymphocyte development and function, and their associations to human diseases (2014) Front. Immunol., 5, p. 279
  • Davis, D.M., Dustin, M.L., What is the importance of the immunological synapse? (2004) Trends Immunol., 25 (6), pp. 323-327
  • Falconnet, D., Csucs, G., Grandin, H.M., Textor, M., Surface engineering approaches to micropattern surfaces for cell-based assays (2006) Biomaterials, 27 (16), pp. 3044-3063
  • Mossman, K., Groves, J., Micropatterned supported membranes as tools for quantitative studies of the immunological synapse (2007) Chem. Soc. Rev., 36 (1), pp. 46-54
  • Milone, M.C., Kam, L.C., Investigative and clinical applications of synthetic immune synapses (2013) Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 5 (1), pp. 75-85
  • June, C.H., Principles of adoptive T cell cancer therapy (2007) J. Clin. Invest., 117 (5), pp. 1204-1212
  • Dale, B.M., Alvarez, R.A., Chen, B.K., Mechanisms of enhanced HIV spread through T-cell virological synapses (2013) Immunol Rev., 251 (1), pp. 113-124
  • Batista, F.D., Neuberger, M.S., B cells extract and present immobilized antigen: implications for affinity discrimination (2000) EMBO J., 19 (4), pp. 513-520
  • Hammond, S., Wagenknecht-Wiesner, A., Veatch, S.L., Holowka, D., Baird, B., Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis (2009) J. Struct. Biol., 168 (1), pp. 161-167
  • Dustin, M.L., Supported bilayers at the vanguard of immune cell activation studies (2009) J. Struct. Biol., 168 (1), pp. 152-160
  • Hsu, C.J., Hsieh, W.T., Waldman, A., Clarke, F., Huseby, E.S., Burkhardt, J.K., Baumgart, T., Ligand mobility modulates immunological synapse formation and T cell activation (2012) PLoS One, 7 (2)
  • Vieu, C., Carcenac, F., Pepin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Launois, H., Electron beam lithography: resolution limits and applications (2000) Appl. Surf. Sci., 164 (1), pp. 111-117
  • Castellana, E.T., Cremer, P.S., Solid supported lipid bilayers: From biophysical studies to sensor design (2006) Surf. Sci. Rep., 61 (10), pp. 429-444
  • Bally, M., Bailey, K., Sugihara, K., Grieshaber, D., Vörös, J., Städler, B., Liposome and Lipid Bilayer Arrays Towards Biosensing Applications (2010) Small, 6 (22), pp. 2481-2497
  • Mujahid, A., Iqbal, N., Afzal, A., Bioimprinting strategies: from soft lithography to biomimetic sensors and beyond (2013) Biotechnol. Adv., 31 (8), pp. 1435-1447

Citas:

---------- APA ----------
Sánchez, M.F., Dodes Traian, M.M., Levi, V. & Carrer, D.C. (2015) . One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns. Langmuir, 31(43), 11943-11950.
http://dx.doi.org/10.1021/acs.langmuir.5b02934
---------- CHICAGO ----------
Sánchez, M.F., Dodes Traian, M.M., Levi, V., Carrer, D.C. "One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns" . Langmuir 31, no. 43 (2015) : 11943-11950.
http://dx.doi.org/10.1021/acs.langmuir.5b02934
---------- MLA ----------
Sánchez, M.F., Dodes Traian, M.M., Levi, V., Carrer, D.C. "One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns" . Langmuir, vol. 31, no. 43, 2015, pp. 11943-11950.
http://dx.doi.org/10.1021/acs.langmuir.5b02934
---------- VANCOUVER ----------
Sánchez, M.F., Dodes Traian, M.M., Levi, V., Carrer, D.C. One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns. Langmuir. 2015;31(43):11943-11950.
http://dx.doi.org/10.1021/acs.langmuir.5b02934