Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The O2/Li2O2 electrode reaction has been studied on low surface area Au electrodes in three solvent-electrolyte pairs (0.1 M LiPF6/DMSO, LiPF6/ACN, and LiBF4/ACN) using an electrochemical cell coupled to UHV XPS spectrometer, EQCM, AFM, and DEMS. The XPS spectra of the surfaces after treatment at selected electrode potentials for the O2 reduction and reoxidation of the surface show the presence of C and S from solvent decomposition and of F and P from electrolyte decomposition. Furthermore, Li 1s and O 1s peaks due to Li2O2 and decomposition products such as carbonate, organics, LiF, high oxidation sulfur, and phosphorus compounds were also observed. Using ACN instead of DMSO results in less solvent decomposition, whereas using LiBF4 results in less electrolyte decomposition. XPS, AFM, and EQCM show that O2 reduction products removal only takes place at very high overpotentials. In agreement with XPS which shows removal of carbonate surface species, DEMS confirms evolution of CO2 and consumption of O2 at 4.5 V, but LiF cannot be removed completely in a round trip of the Li-O2 battery cathode. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs
Autor:Marchini, F.; Herrera, S.; Torres, W.; Tesio, A.Y.; Williams, F.J.; Calvo, E.J.
Filiación:INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, AR-1428, Argentina
Palabras clave:Cathodes; Electric batteries; Electrodes; Electrolytes; Lithium; Lithium batteries; Phosphorus compounds; Reduction; Solvents; X ray photoelectron spectroscopy; Carbonate surfaces; Decomposition products; Different solvents; Electrode potentials; Electrode reactions; Electrolyte decomposition; Lithium-air battery; Solvent decompositions; Electrochemical electrodes
Año:2015
Volumen:31
Número:33
Página de inicio:9236
Página de fin:9245
DOI: http://dx.doi.org/10.1021/acs.langmuir.5b02130
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v31_n33_p9236_Marchini

Referencias:

  • Abraham, K.M., Lithium-air and other batteries beyond lithium-ion batteries (2013) Lithium Batteries: Advanced Technologies and Applications, , 1 st ed. Bruno Scrosati, K. M. A. van Schalkwijk, W. Hassoun, J. John Wiley & Sons, Inc
  • Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Li-O-2 and Li-S batteries with high energy storage (2011) Nat. Mater., 11 (1), p. 19
  • Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., A Critical Review of Li/Air Batteries (2012) J. Electrochem. Soc., 159 (2), pp. 1-R30
  • Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Barde, F., Bruce, P.G., The Lithium-Oxygen Battery with Ether-Based Electrolytes (2011) Angew. Chem., Int. Ed., 50 (37), pp. 8609-8613
  • Hardwick, L.J., Bruce, P.G., The pursuit of rechargeable non-aqueous lithium-oxygen battery cathodes Current Opinion in Solid State (2012) Curr. Opin. Solid State Mater. Sci., 16 (4), pp. 178-185
  • Abraham, K.M., Jiang, Z., A polymer electrolyte-based rechargeable lithium/oxygen battery (1996) J. Electrochem. Soc., 143 (1), pp. 1-5
  • Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G., Rechargeable Li<inf>2</inf>O<inf>2</inf> electrode for lithium batteries (2006) J. Am. Chem. Soc., 128 (4), pp. 1390-1393
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., (2010) J. Phys. Chem. C, 114 (19), pp. 9178-9186
  • Xu, D., Wang, Z.-L., Xu, J.-J., Zhang, L.-L., Zhang, X.-B., Novel DMSO-based electrolyte for high performance rechargeable Li-O<inf>2</inf> batteries (2012) Chem. Commun., 48 (55), pp. 6948-6950
  • Trahan, M.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte (2012) J. Electrochem. Soc., 160 (2), pp. 259-A267
  • McCloskey, B.D., Valery, A., Luntz, A.C., Gowda, S.R., Wallraff, G.M., Garcia, J.M., Mori, T., Krupp, L.E., Combining Accurate O<inf>2</inf> and Li<inf>2</inf>O<inf>2</inf> Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O<inf>2</inf> Batteries (2013) J. Phys. Chem. Lett., 4 (17), pp. 2989-2993
  • Younesi, R., Hahlin, M., Bjorefors, F., Johansson, P., Edstrom, K., Li-O<inf>2</inf> Battery Degradation by Lithium Peroxide (Li<inf>2</inf>O<inf>2</inf>): A Model Study (2013) Chem. Mater., 25 (1), pp. 77-84
  • McCloskey, B.D., Bethune, D.S., Shelby, R.M., Mori, T., Scheffler, R., Speidel, A., Sherwood, M., Luntz, A.C., Limitations in Rechargeability of Li-O<inf>2</inf> Batteries and Possible Origins (2012) J. Phys. Chem. Lett., 3 (20), pp. 3043-3047
  • McCloskey, B.D., Scheffler, R., Speidel, A., Girishkumar, G., Luntz, A.C., On the Mechanism of Nonaqueous Li-O<inf>2</inf> Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li-Air Batteries (2012) J. Phys. Chem. C, 116 (45), pp. 23897-23905
  • Bondue, C.J., Abd-El-Latif, A.A., Hegemann, P., Baltruschat, H., Quantitative Study for Oxygen Reduction and Evolution in Aprotic Organic Electrolytes at Gas Diffusion Electrodes by DEMS (2015) J. Electrochem. Soc., 162 (3), pp. 479-A487
  • Younesi, R., Norby, P., Vegge, T., A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O<inf>2</inf> Batteries (2014) ECS Electrochem. Lett., 3 (3), pp. 15-A18
  • Chalasani, D., Lucht, B.L., Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li<inf>2</inf>O<inf>2</inf> (2012) ECS Electrochem. Lett., 1 (2), pp. 38-A42
  • Sharon, D., Afri, M., Noked, M., Garsuch, A., Frimer, A.A., Aurbach, D., Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen (2013) J. Phys. Chem. Lett., 4 (18), pp. 3115-3119
  • Torres, W., Mozhzhukhina, N., Tesio, A.Y., Calvo, E.J., A rotating ring disk electrode study of the oxygen reduction reaction in lithium containing dimethyl sulfoxide electrolyte: Role of Superoxide (2014) J. Electrochem. Soc., 161 (14), pp. 2204-A2209
  • Torres, W.R., Cantoni, L., Tesio, A.Y., Del Pozo Vazquez, M., Calvo, E.J., EQCM Study of the oxygen reduction on Au electrode in DMSO and Acetonitrile with LiPF<inf>6</inf> (2014) J. Electroanal. Chem., , submitted
  • Torres, W.R., Tesio, A.Y., Calvo, E.J., Solvent co-depostion during oxygen reduction on Au in DMSO LiPF<inf>6</inf> (2014) Electrochem. Commun., 49, p. 38
  • Adams, B.D., Radtke, C., Black, R., Trudeau, M.L., Zaghib, K., Nazar, L.F., Current density dependence of peroxide formation in the Li-O<inf>2</inf> battery and its effect on charge (2013) Energy Environ. Sci., 6 (6), pp. 1772-1778
  • Aetukuri, N.B., McCloskey, B.D., Garcia, J.M., Krupp, L.E., Viswanathan, V., Luntz, A.C., Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O<inf>2</inf> batteries (2014) Nat. Chem., 7 (1), pp. 50-56
  • Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Bruce, P.G., The role of LiO<inf>2</inf> solubility in O<inf>2</inf> reduction in aprotic solvents and its consequences for Li-O<inf>2</inf> batteries (vol 6, pg 1091, 2014) (2014) Nat. Chem., 7 (1), pp. 87-87
  • Mitchell, R.R., Gallant, B.M., Shao-Horn, Y., Thompson, C.V., Mechanisms of Morphological Evolution of Li<inf>2</inf>O<inf>2</inf> Particles during Electrochemical Growth (2013) J. Phys. Chem. Lett., 4 (7), pp. 1060-1064
  • Safari, M., Adams, B.D., Nazar, L.F., Kinetics of Oxygen Reduction in Aprotic Li-O<inf>2</inf> Cells: A Model-Based Study (2014) J. Phys. Chem. Lett., 5 (20), pp. 3486-3491
  • Kwabi, D.G., Batcho, T.P., Amanchukwu, C.V., Ortiz-Vitoriano, N., Hammond, P., Thompson, C.V., Shao-Horn, Y., Chemical instability of dimethyl sulfoxide in lithium-air batteries (2014) J. Phys. Chem. Lett., 5 (16), pp. 2850-2856
  • Mozhuzhukina, N., Mendez De Leo, L.P., Calvo, E.J., Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li-Air Battery (2013) J. Phys. Chem. C, 117 (36), pp. 18375-18380
  • Mendez De Leo, L.P., De La Llave, E., Scherlis, D., Williams, F.J., Molecular and electronic structure of electroactive self-assembled monolayers (2013) J. Chem. Phys., 138 (11), pp. 114707-114707
  • Herrera, S.E., Tesio, A.Y., Clarenc, R., Calvo, E.J., AFM Study of Oxygen Reduction Products on HOPG in LiPF<inf>6</inf> DMSO Electrolyte (2014) Phys. Chem. Chem. Phys., 16 (21), p. 9925
  • Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C., Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films (1997) Faraday Discuss., 107, pp. 141-157
  • Ba, H., Differential Electrochemical Mass Spectrometry (2004) J. Am. Soc. Mass Spectrom., 15, pp. 1693-1706
  • Baltruschat, H., El Aziz, A., El-Latif, A., Electrochemical Mass Spectroscopy (2014) Encyclopedia of Applied Electrochemistry, pp. 507-516. , Kreysa, G. Ota, K.-i. Savinell, R. Springer: New York
  • Abd-El-Latif, A.A., Bondue, C.J., Ernst, S., Hegemann, M., Kaul, J.K., Khodayari, E., Mostafa, K., Baltruschat, H., Insights into electrochemical reactions by differential electrochemical mass spectroscopy (2015) TrAC, Trends Anal. Chem., 70, p. 4
  • Ashton, S.J., (2011) Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), , Technical University of Munich: Germany, Munich
  • Hossain, M.S., Tryk, D., Yeager, E., The electrochemistry of graphite and modified graphite surfaces: The reduction of O<inf>2</inf> (1989) Electrochim. Acta, 34 (12), pp. 1733-1737
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications (2009) J. Phys. Chem. C, 113 (46), pp. 20127-20134
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery (2010) J. Phys. Chem. C, 114 (19), pp. 9178-9186
  • Torres, W., Mozhzhukhina, N., Tesio, A.Y., Calvo, E.J., A Rotating Ring Disk Electrode Study of the Oxygen Reduction Reaction in Lithium Containing Dimethyl Sulfoxide Electrolyte (2014) J. Electrochem. Soc., 161 (14), pp. 2204-A2209
  • Xue, K.-H., McTurk, E., Johnson, L., Bruce, P.G., Franco, A.A., A Comprehensive Model for Non-Aqueous Lithium Air Batteries Involving Different Reaction Mechanisms (2015) J. Electrochem. Soc., 162 (4), pp. 614-A621
  • Aetukuri, N.B., McCloskey, B.D., Garcia, J.M., Krupp, L.E., Viswanathan, V., Luntz, A.C., Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O-2 batteries (2014) Nat. Chem., 7 (1), pp. 50-56
  • Laoire, C.O., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte (2011) J. Electrochem. Soc., 158 (3), pp. 302-A308
  • Yu, Q., Ye, S., In Situ Study of Oxygen Reduction in Dimethyl Sulfoxide (DMSO) Solution: A Fundamental Study for Development of the Lithium-Oxygen Battery (2015) J. Phys. Chem. C, 119 (22), pp. 12236-12250
  • Torres, W.R., Cantoni, L., Tesio, A.Y., Del Pozo, M., Calvo, E.J., EQCM Study of Oxygen Cathodes in DMSO LiPF<inf>6</inf> Electrolyte (2015) J. Electroanal. Chem., , submitted
  • Mozhzhukhinaa, N., Semino, R., Zaldivar, G., Lariaa, D.H., Calvo, E.J., (2013) Preferential Solvation of Lithium Ions in Acetonitrile-DMSO Mixtures, , In preparation
  • Meini, S., Solchenbach, S., Piana, M., Gasteiger, H.A., The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li<inf>2</inf>O<inf>2</inf> in Li-O<inf>2</inf> Batteries (2014) J. Electrochem. Soc., 161 (9), pp. 1306-A1314
  • Gallant, B.M., Kwabi, D.G., Mitchell, R.R., Zhou, J., Thompson, C.V., Shao-Horn, Y., Influence of Li<inf>2</inf>O<inf>2</inf> morphology on oxygen reduction and evolution kinetics in Li-O<inf>2</inf> batteries (2013) Energy Environ. Sci., 6 (8), pp. 2518-2528
  • Gallant, B.M., Mitchell, R.R., Kwabi, D.G., Zhou, J., Zuin, L., Thompson, C.V., Shao-Horn, Y., Chemical and Morphological Changes of Li-O<inf>2</inf> Battery Electrodes upon Cycling (2012) J. Phys. Chem. C, 116 (39), pp. 20800-20805
  • Lu, Y.-C., Crumlin, E.J., Veith, G.M., Harding, J.R., Mutoro, E., Baggetto, L., Dudney, N.J., Shao-Horn, Y., In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions, , Scientific Reports 2
  • Yao, K.P.C., Kwabi, D.G., Quinlan, R.A., Mansour, A.N., Grimaud, A., Lee, Y.-L., Lu, Y.-C., Shao-Horn, Y., Thermal Stability of Li<inf>2</inf>O<inf>2</inf> and Li<inf>2</inf>O for Li-Air Batteries: In Situ XRD and XPS Studies (2013) J. Electrochem. Soc., 160 (6), pp. 824-A831
  • Torres, W.R., Cantoni, L., Tesio, A.Y., Del Pozo Vazquez, M., Calvo, E.J., EQCM Study of the oxygen cathodes in DMSO LiPF<inf>6</inf> Electrolyte (2015) J. Electroanal. Chem., , accepted
  • Lu, Y.C., Kwabi, D.G., Yao, K.P.C., Harding, J.R., Zhou, J., Zuin, L., Shao-Horn, Y., The discharge rate capability of rechargeable Li-O<inf>2</inf> batteries (2011) Energy Environ. Sci., 4 (8), pp. 2999-3007

Citas:

---------- APA ----------
Marchini, F., Herrera, S., Torres, W., Tesio, A.Y., Williams, F.J. & Calvo, E.J. (2015) . Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs. Langmuir, 31(33), 9236-9245.
http://dx.doi.org/10.1021/acs.langmuir.5b02130
---------- CHICAGO ----------
Marchini, F., Herrera, S., Torres, W., Tesio, A.Y., Williams, F.J., Calvo, E.J. "Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs" . Langmuir 31, no. 33 (2015) : 9236-9245.
http://dx.doi.org/10.1021/acs.langmuir.5b02130
---------- MLA ----------
Marchini, F., Herrera, S., Torres, W., Tesio, A.Y., Williams, F.J., Calvo, E.J. "Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs" . Langmuir, vol. 31, no. 33, 2015, pp. 9236-9245.
http://dx.doi.org/10.1021/acs.langmuir.5b02130
---------- VANCOUVER ----------
Marchini, F., Herrera, S., Torres, W., Tesio, A.Y., Williams, F.J., Calvo, E.J. Surface Study of Lithium-Air Battery Oxygen Cathodes in Different Solvent-Electrolyte pairs. Langmuir. 2015;31(33):9236-9245.
http://dx.doi.org/10.1021/acs.langmuir.5b02130